
cdms
Release 3.1.5

Denis Nadeau

Jul 31, 2020

CONTENTS

1 Overview 2

2 Variables 3

3 File I/O 4

4 Coordinate Axes 5

5 Attributes 7

6 Masked Values 8

7 File Variables 9

8 Dataset Variables 11

9 Grids 12
9.1 Example: A Curvilinear Grid . 12
9.2 Example: A Generic Grid . 13

10 Regridding 15
10.1 CDMS Regridder . 15
10.2 SCRIP Regridder . 16

11 Time Types 17

12 Plotting Data 19

13 CDMS Python Application Programming Interface 20
13.1 Overview . 20
13.2 A First Example . 21
13.3 Cdms Module . 22
13.4 CdmsObj . 29
13.5 CoordinateAxis . 29
13.6 CdmsFile . 36
13.7 Dataset . 42
13.8 MV Module . 45
13.9 HorizontalGrid . 48
13.10 Variable . 56
13.11 Selectors . 68
13.12 Examples . 71

i

14 Module: CdTime 75
14.1 Time Types . 75
14.2 Calendars . 75
14.3 Time Constructors . 76
14.4 Relative Time . 76
14.5 Component Time . 76
14.6 Time Methods . 76
14.7 Examples . 77

15 Regridding Data 79
15.1 Overview . 79
15.2 CDMS Horizontal Regrider . 79
15.3 SCRIP Horizontal Regridder . 80
15.4 Regridding Data with SCRIP . 81
15.5 Pressure-Level Regridder . 82
15.6 Cross-Section Regridder . 82
15.7 Regrid Module . 83
15.8 CDMS Horizontal Regridder . 83
15.9 SCRIP Regridder . 83
15.10 Regridder Functions . 84
15.11 CDMS Regridder Functions . 85
15.12 SCRIP Regridder Functions . 87
15.13 Examples . 90

16 Climate Data Markup Language (CDML) 94
16.1 Introduction . 94
16.2 Elements . 94
16.3 Special Characters . 95
16.4 Identifiers . 95
16.5 CF Metadata Standard . 96
16.6 CDML Syntax . 96
16.7 A Sample CDML Document . 102

17 CDMS Utilities 104
17.1 CdScan: Importing Datasets into CDMS . 104

18 APPENDIX A 109
18.1 CDMS Classes . 109

19 APPENDIX B 110
19.1 Quick Start (Cheat Sheet) . 110
19.2 VCS Quick Reference (Cheat Sheet) . 110
19.3 Release Notes . 111

20 APPENDIX C 115
20.1 Module cu . 115
20.2 Slab . 116
20.3 cuDataset . 117

21 CDMS Sample Dataset 120
21.1 THREDDS Data Server (TDS) . 120
21.2 Direct https donwload . 120

22 API 124
22.1 Classes . 124

ii

22.2 Regridder . 124

23 Indices and tables 125

iii

cdms, Release 3.1.5

Version : 3.1.5

CONTENTS 1

CHAPTER

ONE

OVERVIEW

The Community Data Management System is an object-oriented data management system, specialized for organizing
multidimensional, gridded data used in climate analysis and simulation.

CDMS is implemented as part of the Climate Data Analysis Tool [CDAT](https://cdat.llnl.gov/), which uses the Python
language. The examples in this chapter assume some familiarity with the language and the Python Numpy module
(http://www.numpy.org). A number of excellent tutorials on Python are available in books or on the Internet. For
example, see the Python Foundation’s homepage.

2

https://cdat.llnl.gov/
http://www.numpy.org
https://python.org

CHAPTER

TWO

VARIABLES

The basic unit of computation in CDMS is the variable. A variable is essentially a multidimensional data array, aug-
mented with a domain, a set of attributes, and optionally a spatial and/or temporal coordinate system (see Coordinate
Axes). As a data array, a variable can be sliced to obtain a portion of the data, and can be used in arithmetic compu-
tations. For example, if u and v are variables representing the eastward and northward components of wind speed,
respectively, and both variables are functions of time, latitude, and longitude, then the velocity for time 0 (first index)
can be calculated as:

>>> # wget "http://cdat.llnl.gov/cdat/sample_data/clt.nc"
>>> f1=cdms2.open("clt.nc")
>>> u = f1('u')
>>> v = f1('v')
>>> from cdms2 import MV2
>>> vel = MV2.sqrt(u[0]**2 + v[0]**2)

This illustrates several points:

• Square brackets represent the slice operator. Indexing starts at 0, so u[0] selects from variable u for the first
timepoint. The result of this slice operation is another variable. The slice operator can be multidimensional, and
follows the syntax of Numpy Python arrays. In this example, u[0:10,:,1] would retrieve data for the first
ten timepoints, at all latitudes, for the second longitude.

• Variables can be used in computation. ** is the Python exponentiation operator.

• Arithmetic functions are defined in the cdms2.MV2 module.

• Operations on variables carry along the corresponding metadata where applicable. In the above example, vel
has the same latitude and longitude coordinates as u and v, and the time coordinate is the first time of u and v.

3

CHAPTER

THREE

FILE I/O

A variable can be obtained from a file or collection of files, or can be generated as the result of a computation.

Files can be in any of theself- describing formats:

netCDF, HDF, GrADS/GRIB (GRIB with a GrADS control file), or PCMDI DRS.

Note: (HDF and DRS support is optional, and is configured at the time CDAT is installed.)

For instance, to read datafrom file sample.nc into variable u:

>>> # wget "http://cdat.llnl.gov/cdat/sample_data/clt.nc"
>>> f = cdms2.open('clt.nc')
>>> u = f('u')

Data can be read by index or by world coordinate values. The following reads the n-th timepoint of u (the syntax
slice(i,j) refers to indices k such that i <= k < j):

>>> n = 0
>>> u0 = f('u',time=slice(n,n+1))

To read u at time 1.:

>>> u1 = f('u',time=1.)

A variable can be written to a file with the write function:

>>> g = cdms2.open('sample2.nc','w')
>>> g.write(u)
<cdms2.fvariable.FileVariable object at ...
>>> g.close()

4

CHAPTER

FOUR

COORDINATE AXES

A coordinate axis is a variable that represents coordinate information. Typically an axis is associated with one or more
variables in a file or dataset, to represent the indexing and/or spatiotemporal coordinate system(s) of the variable(s).

Often in climate applications an axis is a one-dimensional variable whose values are floating-point and strictly mono-
tonic. In some cases an axis can be multidimensional (see Grids). If an axis is associated with one of the canonical
types latitude, longitude, level, or time, then the axis is called temporal .

The shape and physical ordering of a variable is represented by the variables domain , an ordered tuple of one-
dimensional axes. In the previous example, the domain of the variable u is the tuple (time, latitude, longitude). This
indicates the order of the dimensions, with the slowest-varying dimension listed first (time). The domain may be
accessed with the getAxisList() method:

>>> u.getAxisList()
[id: time1
Designated a time axis.
units: months since 1978-12
Length: 1
First: 1.0
Last: 1.0
Other axis attributes:

calendar: gregorian
axis: T

Python id: ...
, id: plev
Designated a level axis.
units: hPa
Length: 2
First: 200.0
Last: 850.0
Other axis attributes:

axis: Z
realtopology: linear

Python id: ...
, id: latitude1
Designated a latitude axis.
units: degrees_north
Length: 80
First: -88.2884
Last: 88.2884
Other axis attributes:

axis: Y
realtopology: linear

Python id: ...
, id: longitude1

(continues on next page)

5

cdms, Release 3.1.5

(continued from previous page)

Designated a longitude axis.
units: degrees_east
Length: 97
First: -180.0
Last: 180.0
Other axis attributes:

axis: X
topology: circular
modulo: 360.0
realtopology: linear

Python id: ...
]

In the above example, the domain elements are axes that are also spatiotemporal. In general it is not always the case
that an element of a domain is spatiotemporal:

• An axis in the domain of a variable need not be spatiotemporal. For example, it may represent a range of indices,
an index coordinate system.

• The latitude and/or longitude coordinate axes associated with a variable need not be elements of the domain. In
particular this will be true if the variable is defined on a non-rectangular grid (see Grids).

As previously noted, a spatial and/or temporal coordinate system may be associated with a variable. The methods
getLatitude, getLongitude, getLevel, and getTime return the associated coordinate axes. For example:

>>> t = u.getTime()
>>> print t[:]
[1.]
>>> print t.units
months since 1978-12

6

CHAPTER

FIVE

ATTRIBUTES

As mentioned above, variables can have associated attributes , name-value pairs. In fact, nearly all CDMS objects can
have associated attributes, which are accessed using the Python dot notation:

>>> u.units='m/s'
>>> print u.units
m/s

Attribute values can be strings, scalars, or 1-D Numpy arrays.

When a variable is written to a file, not all the attributes are written. Some attributes, called internal attributes, are
used for bookkeeping, and are not intended to be part of the external file representation of the variable. In contrast,
external attributes are written to an output file along with the variable. By default, when an attribute is set, it is treated
as external. Every variable has a field attributes, a Python dictionary that defines the external attributes:

>>> print u.attributes.keys()
'name', 'title', 'tileIndex', 'date', 'source', 'time', 'units', 'type']

The Python dir command lists the internal attribute names:

>>> dir(u)
['T', '_FillValue', '_TransientVariable__domain', ..., 'view']

In general internal attributes should not be modified directly. One exception is the id attribute, the name of the variable.
It is used in plotting and I/O, and can be set directly.

7

CHAPTER

SIX

MASKED VALUES

Optionally, variables have a mask that represents where data are missing. If present, the mask is an array of ones and
zeros having the shape of the data array. A mask value of one indicates that the corresponding data array element is
missing or invalid.

Arithmetic operations in CDMS take missing data into account. The same is true of the functions defined in the
cdms2.MV2 module. For example:

>>> a = MV2.array([1,2,3]) # Create array a, with no mask
>>> b = MV2.array([4,5,6]) # Same for b
>>> a+b # variable_... array([5,7,9,])
variable_...
masked_array(data = [5 7 9],

mask = False,
fill_value = 999999)

>>>
>>>
>>> a[1]=MV2.masked # Mask the second value of a a.mask()
>>> a.mask
array([False, True, False], dtype=bool)
>>> a+b # The sum is masked also
variable_...
masked_array(data = [5 -- 9],

mask = [False True False],
fill_value = 999999)

When data is read from a file, the result variable is masked if the file variable has a missing_value attribute. The mask
is set to one for those elements equal to the missing value, zero elsewhere. If no such attribute is present in the file, the
result variable is not masked.

When a variable with masked values is written to a file, data values with a corresponding mask value of one are set to
the value of the variables missing_value attribute. The data and missing_value attribute are then written to
the file.

Masking is covered in Section 2.9. See also the documentation of the Python Numpy and MA modules, on which
cdms2.MV2 is based, at

https://www.numpy.org/.

8

cdms_2.html#id3
https://www.numpy.org/

CHAPTER

SEVEN

FILE VARIABLES

A variable can be obtained either from a file, a collection of files, or as the result of computation. Correspondingly
there are three types of variables in CDMS:

• file variable is a variable associated with a single data file. Setting or referencing a file variable generates I/O
operations.

• dataset variable is a variable associated with a collection of files. Reference to a dataset variable reads data,
possibly from multiple files. Dataset variables are read-only.

• transient variable is an in-memory object not associated with a file or dataset. Transient variables result from a
computation or I/O operation.

Typical use of a file variables is to inquire information about the variable in a file without actually reading the data for
the variables. A file variable is obtained by applying the slice operator [] to a file, passing the name of the variable,
or by calling the getVariable function.

Note That obtaining a file variable does not actually read the data array:

>>> u = f.getVariable('u') # or u=f['u']
>>> u.shape
(1, 2, 80, 97)

File variables are also useful for fine-grained I/O. They behave like transient variables, but operations on them also
affect the associated file. Specifically:

• slicing a file variable reads data,

• setting a slice writes data,

• referencing an attribute reads the attribute,

• setting an attribute writes the attribute,

• and calling a file variable like a function reads data associated with the variable:

>>> import os
>>> os.system("cp clt.nc /tmp")
0
>>> f = cdms2.open('/tmp/clt.nc','a') # Open read/write
>>> uvar = f['u'] # Note square brackets
>>> uvar.shape
(1, 2, 80, 97)
>>> u0 = uvar[0] # Reads data from sample.nc
>>> u0.shape
(2, 80, 97)
>>> uvar[1]=u0 # Writes data to sample.nc
>>> uvar.units # Reads the attribute 'm/s'

(continues on next page)

9

cdms, Release 3.1.5

(continued from previous page)

'm/s'
>>> u24 = uvar(time=1.0) # Calling a variable like a function reads data
>>> f.close() # Save changes to clt.nc (I/O may be buffered)

For transient variables, the data is printed only if the size of the array is less than the print limit . This value can be set
with the function MV2.set_print_limit to force the data to be printed:

>>> MV2.get_print_limit() # Current limit 1000
1000
>>> smallvar
small variable
masked_array(data =

[[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.]
[10. 11. 12. 13. 14.]
[15. 16. 17. 18. 19.]],
mask =
False,

fill_value = 999999.0)
>>> MV2.set_print_limit(100)
>>> largevar
large variable
masked_array(data =
[[0. 1. 2. ..., 17. 18. 19.]
[20. 21. 22. ..., 37. 38. 39.]
[40. 41. 42. ..., 57. 58. 59.]
...,
[340. 341. 342. ..., 357. 358. 359.]
[360. 361. 362. ..., 377. 378. 379.]
[380. 381. 382. ..., 397. 398. 399.]],
mask = False,
fill_value = 999999.0)

The datatype of the variable is determined with the typecode function:

>>> u.typecode()
'f'

10

CHAPTER

EIGHT

DATASET VARIABLES

The third type of variable, a dataset variable, is associated with a dataset, a collection of files that is treated as a
single file. A dataset is created with the cdscan utility. This generates an XML metafile that describes how the files
are organized and what metadata are contained in the files. In a climate simulation application, a dataset typically
represents the data generated by one run of a general circulation or coupled ocean-atmosphere model.

For example, suppose data for variables u and v are stored in six files:

1. u_2000.nc,

2. u_2001.nc,

3. u_2002.nc,

4. v_2000.nc,

5. v_2001.nc,

6. v_2002.nc.

A metafile can be generated with the command:

$ cdscan -x cdsample.xml [uv]*.nc

The metafile cdsample.xml is then used like an ordinary data file:

>>> import os
>>> os.system("cdscan -x cdsample.xml [uv]*.nc")
0
>>> f = cdms2.open('cdsample.xml')
>>> u = f('u')
>>> u.shape
(3, 16, 32)

11

CHAPTER

NINE

GRIDS

A latitude-longitude grid represents the coordinate information associated with a variable. A grid encapsulates:

• latitude, longitude coordinates

• grid cell boundaries

• area weights

CDMS defines a rich set of grid types to represent the variety of coordinate systems used in climate model applications.
Grids can be categorized as rectangular or nonrectangular.

A rectangular grid has latitude and longitude axes that are one-dimensional, with strictly monotonic values. The grid
is essentially the Cartesian product of the axes. If either criterion is not met, the grid is nonrectangular .

CDMS supports two types of nonrectangular grid:

• A curvilinear grid consists of a latitude and longitude axis, each of which is a two-dimensional coordinate axis.
Curvilinear grids are often used in ocean model applications.

• A generic grid consists of a latitude and longitude axis, each of which is an auxiliary one-dimensional coordinate
axis. An auxiliary axis has values that are not necessarily monotonic. As the name suggests, generic grids can
represent virtually any type of grid. However, it is more difficult to determine adjacency relationships between
grid points.

9.1 Example: A Curvilinear Grid

In this example, variable sample is defined on a 128x192 curvilinear grid. Note that:

• The domain of variable sample is (y , x) where y and x are index coordinate axes.

• The curvilinear grid associated with sample consists of axes (lat , lon), each a two-dimensional coordinate axis.

• lat and lon each have domain (y , x)

>>> f = cdms2.open('sampleCurveGrid4.nc')
>>> # lat and lon are coordinate axes, but are grouped with data variables
>>> f.variables.keys()
['lat', 'sample', 'bounds_lon', 'lon', 'bounds_lat']
>>> # y and x are index coordinate axes
>>> f.axes.keys()
['nvert', 'x', 'y']
>>> # Read data for variable sample
>>> sample = f('sample')
>>> # The associated grid g is curvilinear
>>> g = sample.getGrid()

(continues on next page)

12

cdms, Release 3.1.5

(continued from previous page)

>>> # The domain of the variable consists of index axes
>>> sample.getAxisIds()
['y', 'x']
>>> # Get the coordinate axes associated with the grid
>>> lat = g.getLatitude() # or sample.getLatitude()
>>> lon = g.getLongitude() # or sample.getLongitude()
>>> # lat and lon have the same domain, a subset of the domain of 'sample'
>>> lat.getAxisIds()
['y', 'x']
>>> # lat and lon are variables ...
>>> lat.shape
(32, 48)
>>> lat
lat
masked_array(data =
[[-76.08465554 -76.08465554 -76.08465554 ..., -76.08465554 -76.08465554
-76.08465554]
[-73.92641847 -73.92641847 -73.92641847 ..., -73.92641847 -73.92641847
-73.92641847]
[-71.44420823 -71.44420823 -71.44420823 ..., -71.44420823 -71.44420823
-71.44420823]
...,
[42.32854943 42.6582209 43.31990211 ..., 43.3199019 42.65822088
42.32854943]
[42.70106429 43.05731498 43.76927818 ..., 43.76927796 43.05731495
42.70106429]
[43.0307341 43.41264383 44.17234165 ..., 44.17234141 43.41264379
43.0307341]],
mask = False, fill_value = 1e+20)
>>> lat_in_radians = lat*MV2.pi/180.0

Fig. 1: Figure 1: Curvilinear Grid

9.2 Example: A Generic Grid

In this example variable zs is defined on a generic grid. Figure 2 illustrates the grid, in this case a geodesic grid:

>>> f.variables.keys()
['lat', 'sample', 'bounds_lon', 'lon', 'bounds_lat']
>>> f.axes.keys()
['nvert', 'x', 'y']
>>> zs = f('sample')
>>> g = zs.getGrid()
>>> g
<TransientCurveGrid, id: ..., shape: (32, 48)>

(continues on next page)

9.2. Example: A Generic Grid 13

cdms, Release 3.1.5

(continued from previous page)

>>> lat = g.getLatitude()
>>> lon = g.getLongitude()
>>> lat.shape
(32, 48)
>>> lon.shape # variable zs is defined in terms of a single index coordinate
(32, 48)
>>> # axis, 'cell'
>>> zs.shape
(32, 48)
>>> zs.getAxisIds()
['y', 'x']
>>> # lat and lon are also defined in terms of the cell axis
>>> lat.getAxisIds()
['y', 'x']
>>> # lat and lon are one-dimensional, 'auxiliary' coordinate
>>> # axes: values are not monotonic
>>> lat.__class__
<class 'cdms2.coord.TransientAxis2D'>

Fig. 2: Figure 2: Generic Grid

Generic grids can be used to represent any of the grid types. The method toGenericGrid can be applied to any grid
to convert it to a generic representation. Similarly, a rectangular grid can be represented as curvilinear. The method
toCurveGrid is used to convert a non-generic grid to curvilinear representation:

>>> f = cdms2.open(cdat_info.get_sampledata_path()+'/clt.nc')
>>> clt = f('clt')
>>> rectgrid = clt.getGrid()
>>> rectgrid.shape
(46, 72)
>>> curvegrid = rectgrid.toCurveGrid()
>>> curvegrid
<TransientCurveGrid, id: ..., shape: (46, 72)>
>>> genericgrid = curvegrid.toGenericGrid()
>>> genericgrid
<TransientGenericGrid, id: ..., shape: (3312,)>

9.2. Example: A Generic Grid 14

CHAPTER

TEN

REGRIDDING

Regridding is the process of mapping variables from one grid to another. CDMS supports two forms of regridding.
Which one you use depends on the class of grids being transformed:

• To interpolate from one rectangular grid to another, use the built-in CDMS regridder. CDMS also has built-in
regridders to interpolate from one set of pressure levels to another, or from one vertical cross-section to another.

• To interpolate from any lat-lon grid, rectangular or non-rectangular, use the SCRIP regridder.

10.1 CDMS Regridder

The built-in CDMS regridder is used to transform data from one rectangular grid to another. For example, to regrid
variable u (from a rectangular grid) to a 96x192 rectangular Gaussian grid:

>>> f = cdms2.open('clt.nc')
>>> u = f('u')
>>> u.shape
(1, 2, 80, 97)
>>> t63_grid = cdms2.createGaussianGrid(96)
>>> u63 = u.regrid(t63_grid)
>>> u63.shape
(1, 2, 96, 192)

To regrid a variable uold to the same grid as variable vnew:

>>> f = cdms2.open('clt.nc')
>>> uold = f('u')
>>> unew = f2('uwnd')
>>> uold.shape
(1, 2, 80, 97)
>>> unew.shape
(1, 14, 181, 360)
>>> t63_grid = unew.getGrid() # Obtain the grid for vnew
>>> u63 = uold.regrid(t63_grid)
>>> u63.shape
(1, 2, 181, 360)

15

cdms, Release 3.1.5

10.2 SCRIP Regridder

To interpolate between any lat-lon grid types, the SCRIP regridder may be used. The SCRIP package was developed
at [Los Alamos National Laboratory] (http://oceans11.lanl.gov/drupal/Models/OtherSoftware). SCRIP is written in
Fortran 90, and must be built and installed separately from the CDAT/CDMS installation.

The steps to regrid a variable are:

(External to CDMS)

1. Obtain or generate the grids, in SCRIP netCDF format.

2. Run SCRIP to generate a remapping file.

(In CDMS)

1. Read the regridder from the SCRIP remapping file.

2. Call the regridder with the source data, returning data on the target grid.

Steps 1 and 2 need only be done once. The regridder can be used as often as necessary.

For example, suppose the source data on a T42 grid is to be mapped to a POP curvilinear grid. Assume that SCRIP
generated a remapping file named rmp_T42_to_POP43_conserv.nc:

>>> # Import regrid package for regridder functions
>>> import regrid2, cdms2

>>> # Get the source variable
>>> f = cdms2.open('sampleT42Grid.nc')
>>> dat = f('src_array')
>>> f.close()

>>> # Read the regridder from the remapper file
>>> remapf = cdms2.open('rmp_T42_to_POP43_conserv.nc')
>>> regridf = regrid2.readRegridder(remapf)
>>> remapf.close()

>>> # Regrid the source variable
>>> popdat = regridf(dat)

Regridding is discussed in Chapter 4.

10.2. SCRIP Regridder 16

http://oceans11.lanl.gov/drupal/Models/OtherSoftware
cdms_4.html

CHAPTER

ELEVEN

TIME TYPES

CDMS provides extensive support for time values in the cdtime module. cdtime also defines a set of calendars,
specifying the number of days in a given month.

Two time types are available: relative time and component time . Relative time is time relative to a fixed base time. It
consists of:

• a units string, of the form "units since basetime" , and

• a floating-point value

For example, the time “28.0 days since 1996-1-1” has value= 28.0 , and units=” days since 1996-1-1”. To create a
relative time type:

>>> import cdtime
>>> rt = cdtime.reltime(28.0, "days since 1996-1-1")
>>> rt
28.000000 days since 1996-1-1
>>> rt.value
28.0
>>> rt.units
'days since 1996-1-1'

A component time consists of the integer fields year, month, day, hour, minute, and the floating-point field second. For
example:

>>> ct = cdtime.comptime(1996,2,28,12,10,30)
>>> ct
1996-2-28 12:10:30.0
>>> ct.year
1996
>>> ct.month
2

The conversion functions tocomp and torel convert between the two representations. For instance, suppose that the
time axis of a variable is represented in units ” days since 1979”. To find the coordinate value corresponding to January
1, 1990:

>>> ct = cdtime.comptime(1990,1)
>>> rt = ct.torel("days since 1979")
>>> rt.value
4018.0

Time values can be used to specify intervals of time to read. The syntax time=(c1,c2) specifies that data should be
read for times t such that c1<=t<=c2:

17

cdms, Release 3.1.5

>>> fh = cdms2.open(cdat_info.get_sampledata_path() + "/tas_6h.nc")
>>> c1 = cdtime.comptime(1980,1)
>>> c2 = cdtime.comptime(1980,2)
>>> tas = fh['tas']
>>> tas.shape
(484, 45, 72)
>>> x = tas.subRegion(time=(c1,c2))
>>> x.shape
(125, 45, 72)

or string representations can be used:

>>> fh = cdms2.open(cdat_info.get_sampledata_path() + "/tas_6h.nc")
>>> tas = fh['tas']
>>> x = tas.subRegion(time=('1980-1','1980-2'))

Time types are described in Chapter 3.

18

CHAPTER

TWELVE

PLOTTING DATA

Data read via the CDMS Python interface can be plotted using the vcs module. This module, part of the Climate
Data Analysis Tool (CDAT) is documented in the VCS reference manual. The vcs module provides access to the
functionality of the VCS visualization program.

To generate a plot:

• Initialize a canvas with the vcs init routine.

• Plot the data using the canvas plot routine.

For example:

>>> import cdms2, vcs, cdat_info
>>> fh=cdms2.open(cdat_info.get_sampledata_path() + "/tas_cru_1979.nc")
>>> fh['time'][:] # Print the time coordinates
array([1476., 1477., 1478., 1479., 1480., 1481., 1482., 1483.,

1484., 1485., 1486., 1487.])
>>>
>>> tas = fh('tas', time=1479)
>>> tas.shape
(1, 36, 72)
>>> w = vcs.init() # Initialize a canvas
>>> w.plot(tas) # Generate a plot
<vcs.displayplot.Dp object at...

By default for rectangular grids, a boxfill plot of the lat-lon slice is produced. Since variable precip includes infor-
mation on time, latitude, and longitude, the continental outlines and time information are also plotted. If the variable
were on a non-rectangular grid, the plot would be a meshfill plot.

The plot routine has a number of options for producing different types of plots, such as isofill and x-y plots. See
Chapter 5 for details.

19

cdms_5.html

CHAPTER

THIRTEEN

CDMS PYTHON APPLICATION PROGRAMMING INTERFACE

13.1 Overview

This chapter describes the CDMS Python application programming interface (API). Python is a popular public-
domain, object-oriented language. Its features include support for object-oriented development, a rich set of pro-
gramming constructs, and an extensible architecture. CDMS itself is implemented in a mixture of C and Python. In
this chapter the assumption is made that the reader is familiar with the basic features of the Python language.

Python supports the notion of a module, which groups together associated classes and methods. The import command
makes the module accessible to an application. This chapter documents the cdms, cdtime, and regrid modules.

The chapter sections correspond to the CDMS classes. Each section contains tables base. If no parent, the datapath
is absolute.describing the class internal (non-persistent) attributes, constructors (functions for creating an object), and
class methods (functions). A method can return an instance of a CDMS class, or one of the Python types:

13.1.1 PythonTypes used in CDMS

Type Description
Array Numpy or masked multidimensional data array. All elements of the array are of the same type. Defined

in the Numpy and MV2 modules.
Comptime Absolute time value, a time with representation (year, month, day, hour, minute, second). Defined in

the cdtime module. cf. reltime
Dictionary An unordered 2,3 collection of objects, indexed by key. All dictionaries in CDMS are indexed by

strings, e.g.: axes['time']
Float Floating-point value.
Integer Integer value.
List An ordered sequence of objects, which need not be of the same type. New members can be inserted

or appended. Lists are denoted with square brackets, e.g., [1, 2.0, 'x', 'y']
None No value returned.
Reltime Relative time value, a time with representation (value, units since basetime). Defined in the cdtime

module. cf. comptime
Tuple An ordered sequence of objects, which need not be of the same type. Unlike lists, tuples elements

cannot be inserted or appended. Tuples are denoted with parentheses, e.g., (1, 2.0, 'x', 'y')

20

cdms, Release 3.1.5

13.2 A First Example

The following Python script reads January and July monthly temperature data from an input dataset, averages over
time, and writes the results to an output file. The input temperature data is ordered (time, latitude, longitude).

1 >>> import cdms2, cdat_info
2 >>> from cdms2 import MV2
3 >>> jones = cdms2.open(cdat_info.get_sampledata_path()+'/tas_mo.nc')
4 >>> tasvar = jones['tas']
5 >>> jans = tasvar[0::12]
6 >>> julys = tasvar[6::12]
7 >>> janavg = MV2.average(jans)
8 >>> janavg.id = "tas_jan"
9 >>> janavg.long_name = "mean January surface temperature"

10 >>> julyavg = MV2.average(julys)
11 >>> julyavg.id = "tas_jul"
12 >>> julyavg.long_name = "mean July surface temperature"
13 >>> out = cdms2.open('janjuly.nc','w')
14 >>> out.write(janavg)
15 <cdms2.fvariable.FileVariable object...
16 >>> out.write(julyavg)
17 <cdms2.fvariable.FileVariable object...
18 >>> out.comment = "Average January/July from Jones dataset"
19 >>> jones.close()
20 >>> out.close()

13.2. A First Example 21

cdms, Release 3.1.5

Line Notes
2,3 Makes the CDMS and MV modules available. MV defines arithmetic functions.
4 Opens a netCDF file read-only. The result jones is a dataset object.
5

Gets the surface air temperature variable. ‘tas’ is the name of the variable in the input dataset.
This does not actually read the data.

6
Read all January monthly mean data into a variable jans.

• Variables can be sliced like arrays.
• The slice operator [0::12] means take every 12th slice from dimension 0, starting at index

0 and ending at the last index.
• If the stride 12 were omitted, it would default to 1.

Note: That the variable is actually 3-dimensional.
• Since no slice is specified for the second or third dimensions, all values of those 2,3

dimensions are retrieved.
• The slice operation could also have been written [0::12, : , :].

Also Note: That the same script works for multi-file datasets.
• CDMS opens the needed data files, extracts the appropriate slices, and concate-

nates them into the result array.

7 Reads all July data into a masked array julys.
8 Calculate the average January value for each grid zone. Any missing data is handled automatically.
9,10

Set the variable id and long_name attributes.
• The id is used as the name of the variable when plotted or written to a file.

14 Create a new netCDF output file named ‘janjuly.nc’ to hold the results.
15

Write the January average values to the output file.
• The variable will have id “tas_jan” in the file. write is a utility function which creates

the variable in the file, then writes data to the variable.
• A more general method of data output is first to create a variable, then set a slice of the

variable.
Note: That janavg and julavg have the same latitude and longitude information as tasvar.

It is carried along with the computations.

17 Set the global attribute ‘comment’.
18 Close the output file.

13.3 Cdms Module

The Cdms Module is the Python interface to CDMS. The objects and methods in this chapter are made accessible with
the command:

>>> import cdms2

The functions described in this section are not associated with a class. Rather, they are called as module functions,
e.g.,

>>> file = cdms2.open('sample.nc')

13.3. Cdms Module 22

cdms, Release 3.1.5

13.3.1 Cdms Module Functions

Type Definition
Variable

asVariable(s):
Transform s into a transient variable.

• s is a masked array, Numpy array, or Variable.
• If s is already a transient variable, s is returned.
• See also: isVariable.

Axis
createAxis(data, bounds=None):

Create a one-dimensional coordinate Axis, which is not associated with a file or dataset.
This is useful for creating a grid which is not contained in a file or dataset.

• data is a one-dimensional, monotonic Numpy array.
• bounds is an array of shape (len(data),2), such that for all i
• data[i] is in the range [bounds[i,0],bounds[i,1]].

Note:
• If bounds is not specified, the default boundaries are generated at the midpoints

between the consecutive data values, provided that the autobounds mode is ‘on’
(the default).

• See setAutoBounds.
• Also see: CdmsFile.createAxis

Axis
createEqualAreaAxis(nlat):

Create an equal-area latitude axis.
The latitude values range from north to south, and for all axis values

x[i], sin(x[i])sin(x[i+1]) is constant.
• nlat is the axis length.

Note: The axis is not associated with a file or dataset.

Axis
createGaussianAxis(nlat):

Create a Gaussian latitude axis.
Axis values range from north to south.

• nlat is the axis length.
Note: The axis is not associated with a file or dataset.

RectGrid
createGaussianGrid(nlats, xorigin=0.0, order='yx'):

Create a Gaussian grid, with shape (nlats, 2*nlats).
• nlats is the number of latitudes.
• xorigin is the origin of the longitude axis.
• order is either ‘yx’ (lat-lon, default) or ‘xy’ (lon-lat)

13.3. Cdms Module 23

cdms, Release 3.1.5

13.3. Cdms Module 24

cdms, Release 3.1.5

13.3.2 Cdms Module Functions(cont’d)

Type Definition
RectGrid

createGenericGrid(latArray, lonArray, latBounds=None
lonBounds=None, order='yx', mask=None):

Create a generic grid, that is, a grid which is not typed as Gaussian, uniform, or equal-area.
The grid is not associated with a file or dataset.

• latArray is a NumPy array of latitude values.
• lonArray is a NumPy array of longitude values.
• latBounds is a NumPy array having shape (len(latArray),2), of

latitude boundaries.
• lonBounds is a NumPy array having shape (len(lonArray),2), of

longitude boundaries.
• order is a string specifying the order of the axes, either ‘yx’ for (latitude,

longitude), or ‘xy’ for the reverse.
• mask (optional) is an integer-valued NumPy mask array, having the

same shape and ordering as the grid.

RectGrid
createGlobalMeanGrid(grid):

Generate a grid for calculating the global mean via a regridding operation.
The return grid is a single zone covering the range of he input grid.

• grid is a RectGrid.

RectGrid
createRectGrid(lat, lon, order, type='generic', mask=None):

Create a rectilinear grid, not associated with a file or dataset.
This might be used as the target grid for a regridding operation.

• lat is a latitude axis, created by cdms2.createAxis.
• lon is a longitude axis, created by cdms2.createAxis.
• order is a string with value ‘yx’ (the first grid dimension is latitude) or ‘xy’ (the

first grid dimension is longitude).
• type is one of ‘gaussian’,’uniform’,’equalarea’,or ‘generic’.

Note: If specified, mask is a two-dimensional, logical Numpy array (all values
are zero or one) with the same shape as the grid.

RectGrid
createUniformGrid(startLat, nlat, deltaLat,

start-Lon, nlon, deltaLon, order='yx', mask=None)
Create a uniform rectilinear grid. The grid is not associated with a file or dataset. The grid

boundaries are at the midpoints of the axis values.
• startLat is the starting latitude value.
• nlat is the number of latitudes.
• If nlat is 1, the grid latitude boundaries will be startLat +/-
deltaLat/2.

• deltaLat is the increment between latitudes.
• startLon is the starting longitude value.
• nlon is the number of longitudes.
• If nlon is 1, the grid longitude boundaries will be startLon +/-
deltaLon/2.

• deltaLon is the increment between longitudes.
• order is a string with value ‘yx. (the first grid dimension is latitude) or .xy.

(the first grid dimension is longitude).
Note: If specified, mask is a two-dimensional, logical Numpy array (all values

are zero or one) with the same shape as the grid.

13.3. Cdms Module 25

cdms, Release 3.1.5

13.3.3 Cdms Module Functions(cont’d)

Type Definition
Axis

createUniformLatitudeAxis(startLat , nlat, deltaLat):
Create a uniform latitude axis. The axis boundaries are at the midpoints of the axis values.

The axis is designated as a circular latitude axis.
• startLat is the starting latitude value.
• nlat is the number of latitudes.
• deltaLat is the increment between latitudes.

RectGrid
createZonalGrid(grid):

Create a zonal grid. The output grid has the same latitude as the input grid, and a single lon-
gitude. This may be used to calculate zonal averages via a regridding operation.

• grid is a RectGrid.

Axis
createUniformLongitudeAxis(startLon, nlon, delta-Lon):

Create a uniform longitude axis. The axis boundaries are at the midpoints of the axis values.
The axis is designated as a circular longitude axis.

• startLon is the starting longitude value.
• nlon is the number of longitudes.
• deltaLon is the increment between longitudes.

Variable createVariable(array, typecode=None, copy=0, savespace=0,
mask=None, fill_value=None, grid=None, axes=None , attributes=None,
id=None):

Integer
getAutoBounds():

Get the current autobounds mode.
• Returns 0, 1, or 2.
• See setAutoBounds.

Integer
isVariable(s):

• Return 1 if s is a variable, 0 otherwise.
• See also: asVariable.

13.3. Cdms Module 26

cdms, Release 3.1.5

13.3.4 Cdms Module Functions(cont’d)

Type Definition
Dataset

open(url,mode='r'):
Open or create a Dataset or CdmsFile.

• url is a Uniform Resource Locator, referring to a cdunif or XML file.
• If the URL has the extension ‘.xml’ or ‘.cdml’, a Dataset is returned, otherwise a
CdmsFile is returned.

• If the URL protocol is ‘http’, the file must be a ‘.xml’ or ‘.cdml’ file, and the mode
must be ‘r’.

• If the protocol is ‘file’ or is omitted, a local file or dataset is opened.
• mode is the open mode. See Open Modes

Example: Open an existing dataset: f = cdms2.open('sampleset.xml')
Example: Create a netCDF file: f = cdms2.open('newfile.nc','w')

List
order2index (axes, orderstring):

Find the index permutation of axes to match order.
• Return a list of indices.
• axes is a list of axis objects.
• orderstring is defined as in orderparse.

List
orderparse(orderstring):

Parse an order string.
• Returns a list of axes specifiers.
orderstring consists of:

• Letters t, x, y, z meaning time, longitude, latitude, level
• Numbers 0-9 representing position in axes
• Dash (-) meaning insert the next available axis here.
• The ellipsis . . . meaning fill these positions with any remaining axes.
• (name) meaning an axis whose id is name

13.3. Cdms Module 27

cdms, Release 3.1.5

13.3.5 Cdms Module Functions(cont’d)

Type Definition
None

setAutoBounds(mode):
Set autobounds mode. In some circumstances CDMS can generate boundaries for 1-D axes

and rectilinear grids, when the bounds are not explicitly defined. The autobounds mode
determines how this is done:

• If mode is 'grid' or 2 (the default), the getBounds method will au-
tomatically generate boundary information for an axis or grid if the axis is
designated as a latitude or longitude axis, and the boundaries are not explic-
itly defined.

• If mode is 'on' or 1, the getBounds method will automatically generate
boundary information for an axis or grid, if the boundaries are not explicitly
defined.

• If mode is 'off' or 0, and no boundary data is explicitly defined, the
bounds will NOT be generated; the getBounds method will return None
for the boundaries.

Note: In versions of CDMS prior to V4.0, the default mode was 'on'.

None
setClassifyGrids(mode):

Set the grid classification mode. This affects how grid type is determined, for the purpose of
generating grid boundaries.

• If mode is 'on' (the default), grid type is determined by a grid classification
method,
regardless of the value of grid.get-Type().

• If mode is 'off', the value of grid.getType() determines the grid
type.

None
writeScripGrid(path, grid, gridTitle=None):

Write a grid to a SCRIP grid file.
• path is a string, the path of the SCRIP file to be created.
• grid is a CDMS grid object. It may be rectangular. gridTitle is a string ID for

the grid.

13.3.6 Class Tags

Tag Class
‘axis’ Axis
‘database’ Database
‘dataset’ Dataset, CdmsFile
‘grid’ RectGrid
‘variable’ Variable
‘xlink’ Xlink

13.3. Cdms Module 28

cdms, Release 3.1.5

13.4 CdmsObj

A CdmsObj is the base class for all CDMS database objects. At the application level, CdmsObj objects are never
created and used directly. Rather the subclasses of CdmsObj (Dataset, Variable, Axis, etc.) are the basis of user
application programming.

All objects derived from CdmsObj have a special attribute .attributes. This is a Python dictionary, which contains all
the external (persistent) attributes associated with the object. This is in contrast to the internal, non-persistent attributes
of an object, which are built-in and predefined. When a CDMS object is written to a file, the external attributes are
written, but not the internal attributes.

13.4.1 Attributes Common to All CDMS Objects

Type Name Definition
Dictionary attributes External attribute dictionary for this object.

13.4.2 Getting and Setting Attributes

Type Definition
various

value = obj.attname
Get an internal or external attribute value.

• If the attribute is external, it is read from the database.
• If the attribute is not already in the database, it is created as an external

attribute.
Note: Internal attributes cannot be created, only referenced.

various
obj.attname = value

Set an internal or external attribute value.
• If the attribute is external, it is written to the database.

13.5 CoordinateAxis

A CoordinateAxis is a variable that represents coordinate information. It may be contained in a file or dataset, or
may be transient (memoryresident). Setting a slice of a file CoordinateAxis writes to the file, and referencing a file
CoordinateAxis slice reads data from the file. Axis objects are also used to define the domain of a Variable.

CDMS defines several different types of CoordinateAxis objects. See MV module documents methods that are common
to all CoordinateAxis types. See HorizontalGrid specifies methods that are unique to 1D Axis objects.

13.4. CdmsObj 29

cdms, Release 3.1.5

13.5.1 CoordinateAxis Types

Type Definition
CoordinateAxis

A variable that represents coordinate information.
• Has subtypes Axis2D and AuxAxis1D.

Axis
A one-dimensional coordinate axis whose values are strictly monotonic.

• Has subtypes DatasetAxis, FileAxis, and TransientAxis.
• May be an index axis, mapping a range of integers to the equivalent floating

point value.
• If a latitude or longitude axis, may be associated with a RectGrid.

Axis2D
A two-dimensional coordinate axis, typically a latitude or longitude axis related

to a CurvilinearGrid.
• Has subtypes DatasetAxis2D, FileAxis2D, and TransientAxis2D.

AuxAxis1D
A one-dimensional coordinate axis whose values need not be monotonic.

• Typically a latitude or longitude axis associated with a GenericGrid.
• Has subtypes DatasetAuxAxis1D, FileAuxAxis1D, and
TransientAuxAxis1D.

• An axis in a CdmsFile may be designated the unlimited axis, meaning that it
can be extended in length after the initial definition.

• There can be at most one unlimited axis associated with a CdmsFile.

13.5.2 CoordinateAxis Internal Attributes

Type Name Definition
Dictionary attributes External attribute dictionary.
String id CoordinateAxis identifier.
Dataset parent The dataset which contains the variable.
Tuple shape The length of each axis.

13.5. CoordinateAxis 30

cdms, Release 3.1.5

13.5.3 Axis Constructors

Constructor Description
cdms2.
createAxis
(data,
bounds=None)

Create an axis which is not associated with a dataset or file.
• See A First Example.

Dataset.
createAxis
(name,ar)

Create an Axis in a Dataset. (This function is not yet implemented.)

CdmsFile.
createAxis
(name,ar,
unlimited=0)

Create an Axis in a Cdms2File.
• name is the string name of the Axis.
• ar is a 1-D data array which defines the Axis values.
• It may have the value None if an unlimited axis is being defined.
• At most one Axis in a Cdms2File may be designated as being unlimited,

meaning that it may be extended in length. To define an axis as unlimited,
either:

– A) set ar to None, and leave unlimited undefined, or
– B) set ar to the initial 1-D array, and set unlimited to cdms2.

Unlitmited

* cdms2.createEqualAreaAxis(nlat)

* See A First Example.
* cdms2.createGaussianAxis(nlat)

* See A First Example.
* cdms2.createUniformLatitudeAxis(startlat,
nlat, deltalat)

* See A First Example.
* cdms2.createUniformLongitudeAxis(startlon,
nlon, deltalon)

* See A First Example .

13.5. CoordinateAxis 31

cdms, Release 3.1.5

13.5.4 CoordinateAxis Methods

Type Method Definition
Array array = axis[i:j]

Read a slice of data from the external file or dataset.
• Data is returned in the physical ordering defined in the

dataset.
• See Variable Slice Operators for a description of slice op-

erators.

None axis[i:j] = array
Write a slice of data to the external file.

• Dataset axes are read-only.

None assignValue(array)
Set the entire value of the axis.

• array is a Numpy array, of the same dimensionality as the
axis.

Axis clone(copyData=1)
Return a copy of the axis, as a transient axis.

• If copyData is 1 (the default) the data itself is copied.

None designateLatitude
(persistent=0) Designate the axis to be a latitude axis.

• If persistent is true, the external file or dataset (if any) is
modified.

• By default, the designation is temporary.

None designateLevel
(persistent=0) Designate the axis to be a vertical level axis.

• If persistent is true, the external file or dataset (if any) is
modified.

• By default, the designation is temporary.

None designateLongitude
(persistent=0,
modulo=360.0)

Designate the axis to be a longitude axis.
• modulo is the modulus value.
• Any given axis value x is treated as equivalent to x +
modulus.

• If persistent is true, the external file or dataset (if any)
is modified.

• By default, the designation is temporary.

None designateTime
(persistent=0,
calendar
= cdtime.
MixedCalendar)

Designate the axis to be a time axis.
• If persistent is true, the external file or dataset (if any)

is modified.
• By default, the designation is temporary.
• calendar is defined as in getCalendar().

13.5. CoordinateAxis 32

cdms, Release 3.1.5

13.5.5 CoordinateAxis Methods(cont’d)

Type Method Definition
Array getBounds()

Get the associated boundary array.
The shape of the return array depends on the type of axis:

• Axis: (n,2)
• Axis2D: (i,j,4)
• AuxAxis1D: (ncell, nvert) where nvert is the

maximum number of vertices of a cell.
If the boundary array of a latitude or longitude

• Axis is not explicitly defined, and autoBounds
mode is on, a default array is generated by calling
genGenericBounds.

• Otherwise if auto-Bounds mode is off, the return value
is None.

• See setAutoBounds.

Integer getCalendar()
Returns the calendar associated with the (time)axis.

Possible return values, as defined in the cdtime module, are:

• cdtime.GregorianCalendar: the standard Gre-
gorian calendar

• cdtime.MixedCalendar: mixed Julian/Gregorian
calendar

• cdtime.JulianCalendar: years divisible by 4 are
leap years

• cdtime.NoLeapCalendar: a year is 365 days
• cdtime.Calendar360: a year is 360 days
• None: no calendar can be identified

Note: If the axis is not a time axis, the global, file-related
calendar is returned.

Array getValue() Get the entire axis vector.
Integer isLatitude() Returns true iff the axis is a latitude axis.
Integer isLevel() Returns true iff the axis is a level axis.
Integer isLongitude() Returns true iff the axis is a longitude axis.
Integer isTime() Returns true iff the axis is a time axis.
Integer len(axis)

The length of the axis if one-dimensional.
• If multidimensional, the length of the first dimension.

Integer size() The number of elements in the axis.
String typecode() The Numpy datatype identifier.

13.5. CoordinateAxis 33

cdms, Release 3.1.5

13.5.6 Axis Methods, Additional to CoordinateAxis

Type Method Definition
List of component
times

asComponentTime
(calendar=None) Array version of cdtime tocomp.

• Returns a List of component times.

List of relative
times

asRelativeTime()
Array version of cdtime torel.

• Returns a List of relative times.

None designate
Circular(modulo,
persistent=0)

Designate the axis to be circular.
• modulo is the modulus value.
• Any given axis value x is treated as equivalent

to x + modulus.
• If persistent is True, the external file or

dataset (if any) is modified.
• By default, the designation is temporary.

Integer isCircular()
Returns True if the axis has circular topology.

An axis is defined as circular if:
• axis.topology == 'circular',

or
• axis.topology is undefined, and the

axis is a longitude.
• The default cycle for circular axes is 360.0

Integer isLinear() Returns True if the axis has a linear representation.
Tuple mapInterval

(interval)
Same as mapIntervalExt, but returns only the tuple
(i,j), and wraparound is restricted to one cycle.

13.5. CoordinateAxis 34

cdms, Release 3.1.5

13.5.7 Axis Methods, Additional to CoordinateAxis(cont’d)

Type Method Definition
(i,j,k) mapIntervalExt

(interval)
Map a coordinate interval to an index interval.
interval is a tuple having one of the forms:

• (x,y)
• (x,y,indicator)
• (x,y,indicator,cycle)
• None or ':'

Where x and y are coordinates indicating the interval [x,
y], and:

• indicator is a two or three-character string,
where the first character is 'c' if the interval is
closed on the left, 'o' if open, and the second char-
acter has the same meaning for the right-hand point.
If present, the third character specifies how the inter-
val should be intersected with the axis

• 'n' - select node values which are contained in the
interval

• 'b' -select axis elements for which the correspond-
ing cell boundary intersects the interval

• 'e' - same as n, but include an extra node on either
side

• 's' - select axis elements for which the cell bound-
ary is a subset of the interval

• The default indicator is ‘ccn’, that is, the interval is
closed, and nodes in the interval are selected.

• If cycle is specified, the axis is treated as circular
with the given cycle value.

• By default, if axis.isCircular() is true, the
axis is treated as circular with a default modulus of
360.0.

• An interval of None or ':' returns the full index
interval of the axis.

• The method returns the corresponding index interval
as a 3tuple (i,j,k), where k is the integer stride,
and [i.j) is the half-open index interval i <= k
< j (i >= k > j if k < 0), or none if the
intersection is empty.

• If 0 <= i < n and 0 <= j <= n, the interval
does not wrap around the axis endpoint.

• Otherwise the interval wraps around the axis end-
point.

• See also: mapinterval, variable.
subregion()

transient axis subaxis(i,j,k=1) Create an axis associated with the integer range [i:j:k].
• The stride k can be positive or negative.
• Wraparound is supported for longitude dimensions

or those with a modulus attribute.

13.5. CoordinateAxis 35

cdms, Release 3.1.5

13.5.8 Axis Slice Operators

Slice Definition
[i] The ith element, starting with index 0
[i:j] The ith element through, but not including, element j
[i:] The ith element through and including the end
[:j] The beginning element through, but not including, element j
[:] The entire array
[i:j:k] Every kth element, starting at i, through but not including j
[-i]

The ith element from the end. -1 is the last element.
Example: a longitude axis has value

• [0.0, 2.0, ..., 358.0]
• of length 180

Map the coordinate interval:
• -5.0 <= x < 5.0 to index interval(s), with wraparound.

the result index interval
• -2 <= n < 3 wraps around, since
• -2 < 0, and has a stride of 1
• This is equivalent to the two contiguous index intervals
• 2 <= n < 0 and 0 <= n < 3

Example 1

>>> axis.isCircular()
1
>>> axis.mapIntervalExt((-5.0,5.0,'co'))
(-2,3,1)

13.6 CdmsFile

A CdmsFile is a physical file, accessible via the cdunif interface. netCDF files are accessible in read-write mode.
All other formats (DRS, HDF, GrADS/GRIB, POP, QL) are accessible read-only.

As of CDMS V3, the legacy cuDataset interface is also supported by Cdms-Files. See “cu Module”.

13.6.1 CdmsFile Internal Attributes

Type Name Definition
Dictionary attributes Global, external file attributes
Dictionary axes Axis objects contained in the file.
Dictionary grids Grids contained in the file.
String id File pathname.
Dictionary variables Variables contained in the file.

13.6. CdmsFile 36

cdms, Release 3.1.5

13.6.2 CdmsFile Constructors

Constructor Description
Constructor Description
fileobj = cdms2.open(path,
mode) Open the file specified by path returning a CdmsFile object.

• path is the file pathname, a string.
• mode is the open mode indicator, as listed in Open

Modes.

fileobj = cdms2.
createDataset(path)

Create the file specified by path, a string.

13.6. CdmsFile 37

cdms, Release 3.1.5

13.6.3 CdmsFile Methods

Type Method Definition
Transient-Variable fileobj(varname,

selector)
Calling a CdmsFile object as a function reads the region of
data specified by the selector.

The result is a transient variable, un-
less raw = 1 is specified. See Se-
lectors.

Example: The following reads data for variable
‘prc’, year 1980:

>>> f = cdms2.open('test.nc')
>>> x = f('prc', time=('1980-1',
→˓'1981-1'))

Variable, Axis, or Grid fileobj['id']
Get the persistent variable, axis or grid object

having the string identifier. This does not read the
data for a variable.

Example: The following gets the persistent variable v, equivalent to

>>> v = f.variables['prc']
>>> f = cdms2.open('sample.nc')
>>> v = f['prc']

Example: The following gets the axis named time, equivalent to

>>> t = f.axes['time']
>>> t = f['time']

None close() Close the file.
Axis copyAxis(axis,

newname=None) Copy axis values and attributes to a new axis in the file.
The returned object is persistent: it can be used to
write axis data to or read axis data from the file.

• If an axis already exists in the file, having the
same name and coordinate values, it is returned.

• It is an error if an axis of the same name exists,
but with different coordinate values.

• axis is the axis object to be copied.
• newname, if specified, is the string identifier of

the new axis object.
• If not specified, the identifier of the input axis is

used.

13.6. CdmsFile 38

cdms, Release 3.1.5

13.6.4 CdmsFile Methods(cont’d)

Type Method Definition
Grid copyGrid(grid,

newname=None) Copy grid values and attributes to a new grid in the file.
The returned grid is persistent.

• If a grid already exists in the file, having the
same name and axes, it is returned.

• An error is raised if a grid of the same name
exists, having different axes.

• grid is the grid object to be copied.
• newname, if specified is the string identifier

of the new grid object.
• If unspecified, the identifier of the input grid

is used.

Axis createAxis(id,
ar,
unlimited=0)

Create a new Axis. This is a persistent object which can be
used to read or write axis data to the file.

• id is an alphanumeric string identifier, containing
no blanks.

• ar is the one-dimensional axis array.
• Set unlimited to cdms2.Unlimited to in-

dicate that the axis is extensible.

RectGrid createRectGrid
(id,lat,
lon,order,
type='generic',
mask=None)

Create a RectGrid in the file.
This is not a persistent object: the order, type, and
mask are not written to the file. However, the grid
may be used for regridding operations.

• lat is a latitude axis in the file.
• lon is a longitude axis in the file.
• order is a string with value 'yx' (the lat-

itude) or 'xy' (the first grid dimension is
longitude).

• type is one of
'gaussian','uniform','equalarea'
, or 'generic'.

• If specified, mask is a two-dimensional,
logical Numpy array (all values are zero or
one) with the same shape as the grid.

13.6. CdmsFile 39

cdms, Release 3.1.5

13.6.5 CdmsFile Methods(cont’d)

Type Method Definition
Variable createVariable

(Stringid,String
datatype,Listaxes,
fill_value=None)

Create a new Variable. This is a persistent object which can be
used to read or write variable data to the file.

• id is a String name which is unique with respect to all
other objects in the file.

• datatype is an MV2 typecode, e.g., MV2.Float,
MV2.Int.

• axes is a list of Axis and/or Grid objects.
• fill_value is the missing value (optional).

Variable createVariableCopy
(var,
newname=None)

Create a new Variable, with the same name, axes, and
attributes as the input variable. An error is raised if a
variable of the same name exists in the file.

• var is the Variable to be copied.
• newname, if specified is the name of the

new variable.
• If unspecified, the returned variable has the

same name as var.
Note: Unlike copyAxis, the actual data is not
copied to the new variable.

CurveGrid or
Generic-Grid

readScripGrid
(self,whichGrid=
'destination',
check-Grid=1)

Read a curvilinear or generic grid from a SCRIP netCDF file.
The file can be a SCRIP grid file or remapping file. * If a
mapping file, whichGrid chooses the grid to read, either
'source' or 'destination'. * If checkGrid is
1 (default), the grid cells are checked for convexity, and
‘repaired’ if necessary. * Grid cells may appear to be
nonconvex if they cross a 0 / 2pi boundary. * The repair
consists of shifting the cell vertices to the same side modulo
360 degrees.

13.6. CdmsFile 40

cdms, Release 3.1.5

13.6.6 CdmsFile Methods(cont’d)

Type Method Definition
None sync() Writes any pending changes to the file.
Variable write(var,

attributes=None,
axes=None,
extbounds=None,
id=None,
extend=None,
fill_value=None,
index=None,
typecode=None)

Write a variable or array to the file.
The return value is the associated file variable.

• If the variable does not exist in the file, it is
first defined and all attributes written, then
the data is written.

• By default, the time dimension of the vari-
able is defined as the unlimited dimension
of the file.

• If the data is already defined, then data is
extended or overwritten depending on the
value of keywords extend and index,
and the unlimited dimension values asso-
ciated with var.

• var is a Variable, masked array, or
Numpy array.

• attributes is the attribute dictionary
for the variable. The default is var.
attributes.

• axes is the list of file axes comprising the
domain of the variable.

• The default is to copy var.
getAxisList().

• extbounds is the unlimited di-
mension bounds. Defaults to var.
getAxis(0).getBounds().

• id is the variable name in the file. Default
is var.id.

• extend = 1 causes the first dimension
to be unlimited: iteratively writeable.

• The default is None, in which case the first
dimension is extensible if it is time.Set
to 0 to turn off this behaviour.

• fill_value is the missing value flag.
• index is the extended dimension index to

write to. The default index is determined
by lookup relative to the existing extended
dimension.

Note: Data can also be written by setting a slice
of a file variable, and attributes can be written
by setting an attribute of a file variable.

13.6. CdmsFile 41

cdms, Release 3.1.5

13.6.7 CDMS Datatypes

CDMS Datatype Definition
CdChar character
CdDouble double-precision floating-point
CdFloat floating-point
CdInt integer
CdLong long integer
CdShort short integer

13.7 Dataset

A Dataset is a virtual file. It consists of a metafile, in CDML/XML representation, and one or more data files.

As of CDMS V3, the legacy cuDataset interface is supported by Datasets. See “cu Module”.

13.7.1 Dataset Internal Attributes

Type Name Description
Dictionary attributes Dataset external attributes.
Dictionary axes Axes contained in the dataset.
String datapath Path of data files, relative to the parent database. If no parent, the

datapath is absolute.
Dictionary grids Grids contained in the dataset.
String mode Open mode.
Database parent Database which contains this dataset. If the dataset is not part of a

database, the value is None.
String uri Uniform Resource Identifier of this dataset.
Dictionary variables Variables contained in the dataset.
Dictionary xlinks External links contained in the dataset.

13.7.2 Dataset Constructors

Constructor Description
datasetobj = cdms2.
open(String uri, String
mode='r')

Open the dataset specified by the Universal Resource Indicator, a
CDML file. Returns a Dataset object. mode is one of the indicators
listed in Open Modes . openDataset is a synonym for open

13.7. Dataset 42

cdms, Release 3.1.5

13.7.3 Open Modes

Mode Definition
‘r’ read-only
‘r+’ read-write
‘a’ read-write. Open the file if it exists, otherwise create a new file
‘w’ Create a new file, read-write

13.7. Dataset 43

cdms, Release 3.1.5

13.7.4 Dataset Methods

Type Definition Description
Transient-Variable datasetobj(varname,

selector) Calling a Dataset object as a function reads the region
of data defined by the selector. The result is a tran-
sient variable, unless raw = 1 is specified. See
<#selectors>`_.

Example: The following reads data for
variable ‘prc’, year 1980:

>>> f = cdms2.open('test.xml')
>>> x = f('prc', time=('1980-1
→˓','1981-1'))

Variable, Axis, or
Grid

datasetobj['id']
The square bracket operator applied to a dataset gets

the persistent variable, axis or grid object having the
string identifier. This does not read the data for a
variable. Returns None if not found.

Example:

>>> f = cdms2.open('sample.
→˓xml')
>>> v = f['prc']

* gets the persistent
→˓variable v, equivalent
→˓to ``v =f.variab les['prc
→˓']``.

Example:

>>> t = f['time'] gets the
→˓axis named 'time',
→˓equivalent to
>>> t = f.axes['time']

None close() Close the dataset.
RectGrid createRectGrid(id,

lat, lon,order,
type='generic',
mask=None)

Create a RectGrid in the dataset. This is not a persistent
object: the order, type, and mask are not written to
the dataset. However, the grid may be used for re-
gridding operations.

• lat is a latitude axis in the dataset.
• lon is a longitude axis in the dataset.
• order is a string with value ‘yx’ (the first grid

dimension is latitude) or ‘xy’ (the first grid di-
mension is longitude).

• type is one of ‘gaussian’,’uniform’,’eq
ualarea’,or ‘generic’

• If specified, mask is a two-dimensional, log-
ical Numpy array (all values are zero or one)
with the same shape as the grid.

13.7. Dataset 44

cdms, Release 3.1.5

13.7.5 Dataset Methods(Cont’d)

Type Definition Description
Axis getAxis(id)

Get an axis object from the file or dataset.
• id is the string axis identifier.

Grid getGrid(id)
Get a grid object from a file or dataset.

• id is the string grid identifier.

List getPaths() Get a sorted list of pathnames of datafiles which comprise
the dataset. This does not include the XML metafile path,
which is stored in the .uri attribute.

Variable getVariable(id)
Get a variable object from a file or dataset.

• id is the string variable identifier.

CurveGrid or
GenericGrid

readScripGrid(self,
whichGrid='
destination',
check-orGeneric
-Grid=1)

Read a curvilinear orgeneric grid from a SCRIP dataset.

• The dataset can be a SCRIP grid file or remap-
pingfile.

• If a mapping file, whichGrid chooses
the grid to read, either 'source' or
'destination'.

• If checkGrid is 1 (default), the grid cells are
checked for convexity, and ‘repaired’ if neces-
sary. Grid cells may appear to be nonconvex
if they cross a 0 / 2pi boundary. The repair
consists of shifting the cell vertices to the same
side modulo 360 degrees.

None sync() Write any pending changes to the dataset.

13.8 MV Module

The fundamental CDMS data object is the variable. A variable is comprised of:

• a masked data array, as defined in the NumPy MV module.

• a domain: an ordered list of axes and/or grids.

• an attribute dictionary.

The MV module is a work-alike replacement for the MV module, that carries along the domain and attribute informa-
tion where appropriate. MV provides the same set of functions as MV2. However, MV functions generate transient
variables as results. Often this simplifies scripts that perform computation. MV is part of the Python Numpy package,
documented at http://www.numpy.org.

MV can be imported with the command:

>>> import MV2

The command

13.8. MV Module 45

http://www.numpy.org

cdms, Release 3.1.5

>>> from MV2 import *

Allows use of MV commands without any prefix.

Table Variable Constructors in module MV2, lists the constructors in MV. All functions return a transient variable. In
most cases the keywords axes, attributes, and id are available. Axes is a list of axis objects which specifies the domain
of the variable. Attributes is a dictionary. id is a special attribute string that serves as the identifier of the variable, and
should not contain blanks or non-printing characters. It is used when the variable is plotted or written to a file. Since
the id is just an attribute, it can also be set like any attribute:

>>> var.id = 'temperature'

For completeness MV provides access to all the MV functions. The functions not listed in the following tables
are identical to the corresponding MV function: allclose, allequal, common_fill_value, compress,
create_mask, dot, e, fill_value, filled, get_print_limit, getmask, getmaskarray,
identity, indices, innerproduct, isMV2, isMaskedArray, is_mask, isarray, make_mask,
make_mask_none, mask_or, masked, pi, put, putmask, rank, ravel, set_fill_value,
set_print_limit, shape, size. See the documentation at http://numpy.sourceforge.net for a description of
these functions.

13.8.1 Variable Constructors in Module MV

Constructor Description
arrayrange(start, stop=None,
step=1, typecode=None,
axis=None, attributes=None,
id=None)

Just like MV2.arange() except it returns a variable whose type can
be specfied by the keyword argument typecode. The axis, attribute
dictionary, and string identifier of the result variable may be specified.
Synonym: arange

masked_array(a, mask=None,
fill_value=None, axes=None,
attributes=None, id=None)

Same as MV2.masked_array but creates a variable instead. If no axes
are specified, the result has default axes, otherwise axes is a list of
axis objects matching a.shape.

masked_object(data,value,
copy=1,savespace=0,
axes=None, attributes=None,
id=None)

Create variable masked where exactly data equal to value. Create the
variable with the given list of axis objects, attribute dictionary, and
string id.

masked_values(data,value,
rtol=1e-05, atol=1e-08,
copy=1, savespace=0,
axes=None, attributes=None,
id=None)

Constructs a variable with the given list of axes and attribute dic-
tionary, whose mask is set at those places where abs(data -
value) > atol + rtol * abs(data). This is a careful
way of saying that those elements of the data that have value = value
(to within a tolerance) are to be treated as invalid. If data is not of a
floating point type, calls masked_object instead.

ones(shape, typecode='l',
savespace=0,axes=none,
attributes=none, id=none)

Return an array of all ones of the given length or shape.

reshape(a,newshape,
axes=none, attributes=none,
id=none)

Copy of a with a new shape.

resize(a,newshape,
axes=none, attributes=none,
id=none)

Return a new array with the specified shape. the original arrays total
size can be any size.

zeros(shape,typecode='l',
savespace=0, axes=none,
attributes=none, id=none)

An array of all zeros of the given length or shape

13.8. MV Module 46

http://numpy.sourceforge.net

cdms, Release 3.1.5

The following table describes the MV non-constructor functions. with the exception of argsort, all functions return a
transient variable.

13.8.2 MV Functions

Function Description
argsort(x, axis=-1,
fill_value=None)

Return a Numpy array of indices for sorting along a given axis.

asarray(data, typecode=None)
Same as cdms2.createVariable

(data, typecode, copy=0).
• This is a short way of ensuring that something is an

instance of a variable of a given type before proceed-
ing, as in data = asarray(data).

• Also see the variable astype() function.

average(a, axis=0,
weights=None) Computes the average value of the non-masked elements of

x along the selected axis.
• If weights is given, it must match the size

and shape of x, and the value returned is:
sum(a*weights)/sum(weights)

• In computing these sums, elements that correspond
to those that are masked in x or weights are ignored.

choose(condition, t)
Has a result shaped like array condition.

• t must be a tuple of two arrays t1 and t2.
• Each element of the result is the corresponding element

of t1where condition is true, and the corresponding
element of t2 where condition is false.

• The result is masked where condition is masked or
where the selected element is masked.

concatenate(arrays,
axis=0, axisid=None,
axisattributes=None)

Concatenate the arrays along the given axis. Give the extended axis
the id and attributes provided - by default, those of the first array.

count(a, axis=None) Count of the non-masked elements in a, or along a certain axis.
isMaskedVariable(x) Return true if x is an instance of a variable.
masked_equal(x, value) x masked where x equals the scalar value. For floating point values

consider masked_values(x, value) instead.
masked_greater(x, value) x masked where x > value
masked_greater_equal(x,
value)

x masked where x >= value

masked_less(x, value) x masked where x < value
masked_less_equal(x, value) x masked where x ≤ value
masked_not_equal(x, value) x masked where x != value
masked_outside(x, v1, v2) x with mask of all values of x that are outside [v1,v2]
masked_where(condition, x,
copy=1) Return x as a variable masked where condition is true.

• Also masked where x or condition masked.
• condition is a masked array having the same shape as
x.

13.8. MV Module 47

cdms, Release 3.1.5

13.8.3 MV Functions(cont’d)

Function Description
maximum(a, b=None) Compute the maximum valid values of x if y is None; with two ar-

guments, return the element-wise larger of valid values, and mask the
result where either x or y is masked.

minimum(a, b=None) Compute the minimum valid values of x if y is None; with two argu-
ments, return the element-wise smaller of valid values, and mask the
result where either x or y is masked.

outerproduct(a, b) Return a variable such that result[i, j] = a[i] * b[j].
The result will be masked where a[i] or b[j] is masked.

power(a, b) a**b
product(a, axis=0,
fill_value=1)

Product of elements along axis using fill_value for missing ele-
ments.

repeat(ar, repeats, axis=0) Return ar repeated repeats times along axis. repeats is a
sequence of length ar.shape[axis] telling how many times to
repeat each element.

set_default_fill_value
(value_type, value) Set the default fill value for value_type to value.

• value_type is a string:
‘real’,’complex’,’character’,’integer’,or ‘object’.

• value should be a scalar or single-element array.

sort(ar, axis=-1) Sort array ar elementwise along the specified axis. The correspond-
ing axis in the result has dummy values.

sum(a, axis=0, fill_value=0) Sum of elements along a certain axis using fill_value for miss-
ing.

take(a, indices, axis=0) Return a selection of items from a. See the documentation in the
Numpy manual.

transpose(ar, axes=None) Perform a reordering of the axes of array ar depending on the tuple of
indices axes; the default is to reverse the order of the axes.

where(condition, x, y) x where condition is true, y otherwise

13.9 HorizontalGrid

A HorizontalGrid represents a latitude-longitude coordinate system. In addition, it optionally describes how lat-lon
space is partitioned into cells. Specifically, a HorizontalGrid:

• Consists of a latitude and longitude coordinate axis.

• May have associated boundary arrays describing the grid cell boundaries,

• May optionally have an associated logical mask.

CDMS supports several types of HorizontalGrids:

13.9. HorizontalGrid 48

cdms, Release 3.1.5

13.9.1 Grids

Grid Type Definition
RectGrid Associated latitude an longitude are 1-D axes, with strictly monotonic

values.
GenericGrid Latitude and longitude are 1-D auxiliary coordinate axis (Aux-

Axis1D)

13.9.2 HorizontalGrid Internal Attribute

Type Name Definition
Dictionary attributes External attribute dictionary.
String id The grid identifier.
Dataset or Cdms-
File

parent The dataset or file which contains the grid.

Tuple shape The shape of the grid, a 2-tuple

13.9. HorizontalGrid 49

cdms, Release 3.1.5

13.9.3 RectGrid Constructors

Constructor Description
cdms2.
createRectGrid(lat,
lon, order,
type='generic',
mask=None)

Create a grid not associated with a file or dataset. See A First Example

Cdms2File.
createRectGrid(id,
lat, lon, order,
type='generic',
mask=None)

Create a grid associated with a file. See CdmsFile Constructors

Dataset.
createRectGrid(id,
lat, lon, order,
type='generic',
mask=None)

Create a grid associated with a dataset. See Dataset Constructors

cdms2.
createGaussianGrid
(nlats, xorigin=0.
0, order='yx')

See A First Example

cdms2.
createGenericGrid
(latArray,
lonArray,
latBounds=None,
lonBounds=None,
order='yx',
mask=None)

See A First Example

cdms2.
createGlobalMeanGrid
(grid)

See A First Example

cdms2.
createRectGrid(lat,
lon, order,
type='generic',
mask=None)

See A First Example

cdms2.
createUniformGrid
(startLat, nlat,
deltaLat, startLon,
nlon, deltaLon,
order='yx',
mask=None)

See A First Example

cdms2.
createZonalGrid(grid)

See A First Example

13.9. HorizontalGrid 50

cdms, Release 3.1.5

13.9.4 HorizontalGrid Methods

Type Method Description
Horizontal-Grid clone() Return a transient copy of the grid.
Axis getAxis(Integer

n)
Get the n-th axis.n is either 0 or 1.

Tuple getBounds()
Get the grid boundary arrays. Returns a tuple

(latitudeArray, longitudeArray), where
latitudeArray is a Numpy array of latitude bounds, and
similarly for longitudeArray.

The shape of latitudeArray and longitudeArray
depend on the type of grid:

• For rectangular grids with shape (nlat, nlon),
the boundary arrays have shape (nlat,2) and
(nlon,2).

• For curvilinear grids with shape (nx, ny), the
boundary arrays each have shape (nx, ny, 4).

• For generic grids with shape (ncell,), the bound-
ary arrays each have shape (ncell, nvert) where
nvert is the maximum number of vertices per
cell.

• For rectilinear grids: If no boundary ar-
rays are explicitly defined (in the file or
dataset), the result depends on the auto- Bounds
mode (see cdms2.setAutoBounds) and
the grid classification mode (see cdms2.
setClassifyGrids).

By default, autoBounds mode is enabled, in which
case the boundary arrays are generated based on the
type of grid.

• If disabled, the return value is (None,None). For
rectilinear grids:

• The grid classification mode specifies how the
grid type is to be determined.

• By default, the grid type (Gaussian, uni-
form, etc.) is determined by calling
grid.classifyInFamily.

• If the mode is ‘off’ grid.getType is used instead.

Axis getLatitude() Get the latitude axis of this grid.
Axis getLongitude() Get the latitude axis of this grid.

13.9. HorizontalGrid 51

cdms, Release 3.1.5

13.9.5 HorizontalGrid Methods(cont’d)

Type Method Description
Axis getMask()

Get the mask array of this grid, if any.
• Returns a 2-D Numpy array, having the same shape

as the grid.
• If the mask is not explicitly defined, the return value

is None.

Axis getMesh(self,
transpose=None) Generate a mesh array for the meshfill graphics method.

• If transpose is defined to a tuple, say (1,0), first trans-
pose latbounds and lonbounds according to the tuple,
in this case (1,0,2).

None setBounds
(latBounds,
lonBounds,
persistent=0)

Set the grid boundaries.
• latBounds is a NumPy array of shape (n,2),

such that the boundaries of the kth axis value are
[latBounds[k,0],latBou nds[k,1]].

• lonBounds is defined similarly for the longitude
array.

Note: By default, the boundaries are not written to the file
or dataset containing the grid (if any). This allows bounds
to be set on read-only files, for regridding. If the optional
argument persistent is set to the boundary array is
written to the file.

None setMask(mask,
persistent=0) Set the grid mask.

• If persistent == 1, the mask values are writ-
ten to the associated file, if any.

• Otherwise, the mask is associated with the grid, but
no I/O is generated.

• mask is a two-dimensional, Boolean-valued Numpy
array, having the same shape as the grid.

13.9. HorizontalGrid 52

cdms, Release 3.1.5

13.9. HorizontalGrid 53

cdms, Release 3.1.5

13.9.6 HorizontalGrid Methods(cont’d)

Type Method Description
Horizontal-Grid subGridRegion

(latInterval,
lonInterval)

Create a new grid corresponding to the coordinate
region defined by latInterval, lonInterv al.

• latInterval and lonInterval are the
coordinate intervals for latitude and longitude,
respectively.

• Each interval is a tuple having one of the forms:
• (x,y)
• (x,y,indicator)
• (x,y,indicator,cycle)
• None

Where x and y are coordinates indicating the inter-
val [x,y), and:

• indicator is a two-character string,
where the first character is ‘c’ if the in-
terval is closed on the left, ‘o’ if open,
and the second character has the same
meaning for the right-hand point. (De-
fault: ‘co’).

• If cycle is specified, the axis is
treated as circular with the given cycle
value.

• By default, if grid.
isCircular() is true, the axis
is treated as circular with a default
value of 360.0.

• An interval of None returns the full in-
dex interval of the axis.

• If a mask is defined, the subgrid also
has a mask corresponding to the index
ranges.

Note: The result grid is not associated with
any file or dataset.

Transient-CurveGrid toCurveGrid
(gridid=None) Convert to a curvilinear grid.

• If the grid is already curvilinear, a copy of the grid
object is returned.

• gridid is the string identifier of the resulting curvi-
linear grid object.

• If unspecified, the grid ID is copied.
Note: This method does not apply to generic grids.

Transient-
GenericGrid

toGenericGrid
(gridid=None) Convert to a generic grid.

• If the grid is already generic, a copy of the grid is
returned.

• gridid is the string identifier of the resulting curvi-
linear grid object.

• If unspecified, the grid ID is copied.

13.9. HorizontalGrid 54

cdms, Release 3.1.5

13.9.7 RectGrid Methods, Additional to HorizontalGrid Methods

Type Method Description
String getOrder() Get the grid ordering, either ‘yx’ if latitude is the first axis, or

‘xy’ if longitude is the first axis.
String getType() Get the grid type, either ‘gaussian’, ‘uniform’, ‘equalarea’, or

‘generic’.
(Array,Array) getWeights()

Get the normalized area weight arrays, as a tuple (latWeights, lonWeights).

It is assumed that the latitude and longitude axes are defined in degrees.

The latitude weights are defined as:
• latWeights[i] = 0.5 *
abs(sin(latBounds[i+1]) -
sin(latBounds[i]))

The longitude weights are defined as:
• lonWeights[i] =
abs(lonBounds[i+1] -
lonBounds [i])/360.0

For a global grid, the weight arrays are normalized
such that the sum of the weights is 1.0

Example:
• Generate the 2-D weights array,

such that weights[i.j] is the
fractional area of grid zone [i,j].

• From cdms import MV
• latwts, lonwts = gri d.getWeights()
• weights = MV.outerproduct(latwts,

lonwts)
• Also see the function
area_weights in module
pcmdi.weighting.

None setType
(gridtype) Set the grid type.

• gridtype is one of ‘gaussian’, ‘uniform’,
‘equalarea’, or ‘generic’.

13.9. HorizontalGrid 55

cdms, Release 3.1.5

13.9.8 RectGrid Methods, Additional to HorizontalGrid Methods(cont’d)

Type Method Description
RectGrid subGrid

((latStart,
latStop),
(lonStart,
lonStop))

Create a new grid, with latitude index range `` [latStart
[latStop] and longitude index range [lonStart][lonStop].
Either index range can also be specified as None, indi-
cating that the entire range of the latitude or longitude is
used.]
Example:

• This creates newgrid corresponding to all lati-
tudes and index range [lonStart:lonStop] of old-
grid.

• newgrid = oldgrid.subGrid(None,
(lonStart, lon Stop))

• If a mask is defined, the subgrid also has a mask
corresponding to the index ranges.

Note: The result grid is not associated with any file or
dataset.

RectGrid transpose()
Create a new grid, with axis order reversed. The grid

mask is also transposed. Note: The result grid is not as-
sociated with any file or dataset.

13.10 Variable

A Variable is a multidimensional data object, consisting of:

• A multidimensional data array, possibly masked,

• A collection of attributes

• A domain, an ordered tuple of CoordinateAxis objects.

A Variable which is contained in a Dataset or CdmsFile is called a persistent variable. Setting a slice of a persistent
Variable writes data to the Dataset or file, and referencing a Variable slice reads data from the Dataset. Variables may
also be transient, not associated with a Dataset or CdmsFile.

Variables support arithmetic operations, including the basic Python operators (+„*,/,**, abs, and sqrt), as well as the
operations defined in the MV module. The result of an arithmetic operation is a transient variable, that is, the axis
information is transferred to the result.

The methods subRegion and subSlice return transient variables. In addition, a transient variable may be created with
the cdms.createVariable method. The vcs and regrid module methods take advantage of the attribute, domain, and
mask information in a transient variable.

13.10. Variable 56

cdms, Release 3.1.5

13.10.1 Variable Internal Attributes

Type Name Definition
Dictionary attributes External attribute dictionary.
String id Variable identifier.
String name_in_file The name of the variable in the file or files which represent the

dataset. If different from id, the variable is aliased.
Dataset or CdmsFile parent The dataset or file which contains the variable.
Tuple shape The length of each axis of the variable

13.10. Variable 57

cdms, Release 3.1.5

13.10.2 Variable Constructors

Constructor Description
Dataset.
createVariable
(String id, String
datatype, List
axes)

Create a Variable in a Dataset. This function is not yet implemented.

CdmsFile.
createVariable
(String id, String
datatype, List axes
or Grids)

Create a Variable in a CdmsFile.
• id is the name of the variable.
• datatype is the MV or Numpy | typecode, for example, MV.Float.
• axesOrGrids is a list of Axis and/or Grid objects, on which the

variable is defined. Specifying a rectilinear grid is equivalent to listing
the grid latitude and longitude axes, in the order defined for the grid.

Note: This argument can either be a list or a tuple. If the tuple form is
used, and there is only one element, it must have a following comma, e.g.:
(axisobj,).

cdms2.
createVariable
(array,
typecode=None,
copy=0,
savespace=0,
mask=None,
fill_value=None,
grid=None,
axes=None,
attributes=None,
id=None)

Create a transient variable, not associated with a file or dataset.
• array is the data values: a Variable, masked array, or Numpy array.
• typecode is the MV typecode of the array. Defaults to the typecode

of array.
• copy is an integer flag: if 1, the variable is created with a copy of the

array, if 0 the variable data is shared with array.
• savespace is an integer flag: if set to 1, internal Numpy operations

will attempt to avoid silent upcasting.
• mask is an array of integers with value 0 or 1, having the same shape

as array. array elements with a corresponding mask value of 1 are
considered invalid, and are not used for subsequent Numpy operations.
The default mask is obtained from array if present, otherwise is None.

• fill_value is the missing value flag. The default is obtained from
array if possible, otherwise is set to 1.0e20 for floating point variables,
0 for integer-valued variables.

• grid is a rectilinear grid object.
• axes is a tuple of axis objects. By default the axes are obtained from

array if present. Otherwise for a dimension of length n, the default axis
has values [0., 1., . . . , double(n)].

• attributes is a dictionary of attribute values. The dictionary keys
must be strings. By default the dictionary is obtained from array if
present, otherwise is empty.

• id is the string identifier of the variable. By default the id is obtained
from array if possible, otherwise is set to ‘variable_n’ for some integer.

13.10. Variable 58

cdms, Release 3.1.5

13.10.3 Variable Methods

Type Method Definition
Variable tvar = var[i:j,

m:n] Read a slice of data from the file or dataset, resulting
in a transient variable.

• Singleton dimensions are ‘squeezed’ out.
• Data is returned in the physical ordering

defined in the dataset.
• The forms of the slice operator are listed

in Variable Slice Operators

None var[i:j, m:n] =
array Write a slice of data to the external dataset.

• The forms of the slice operator are listed in Re-
sult Entry Methods . (Variables in CdmsFiles
only)

Variable tvar =
var(selector) Calling a variable as a function reads the region of

data defined by the selector.
• The result is a transient variable, unless

raw=1 keyword is specified.
• See Selectors .

None assignValue(Array
ar)

Write the entire data array. Equivalent to var[:] =
ar. (Variables in CdmsFiles only).

Variable astype(typecode)
Cast the variable to a new datatype.

• Typecodes are as for MV, MV, and Numpy
modules.

Variable clone(copyData=1)
Return a copy of a transient variable.

• If copyData is 1 (the default) the variable data
is copied as well.

• If copyData is 0, the result transient variable
shares the original transient variables data ar-
ray.

13.10. Variable 59

cdms, Release 3.1.5

13.10.4 Variable Methods(cont’d)

Type Method Definition
Transient Variable crossSectionRegrid

(newLevel,
newLatitude,
method='log',
missing=None,
order=None)

Return a lat/level vertical cross-section regridded to a
new set of latitudes newLatitude and levels
newLevel.

• The variable should be a function of latitude,
level, and (optionally) time.

• newLevel is an axis of the result pressure
levels.

• newLatitude is an axis of the result lati-
tudes.

• method is optional, either ‘log’ to interpolate
in the log of pressure (default), or ‘linear’ for
linear interpolation.

• missing is a missing data value. The default
is var.getMissing()

• order is an order string such as ‘tzy’ or ‘zy’.
The default is var.getOrder().

• See also: regrid, pressureRegrid.

Axis getAxis(n)
Get the n-th axis.

• n is an integer.

List getAxisIds() Get a list of axis identifiers.
Integer getAxisIndex

(axis_spec) Return the index of the axis specificed by axis_spec.
Return -1 if no match.

• axis_spec is a specification as defined
for getAxisList

List getAxisList
(axes=None,
omit=None,
order=None)

Get an ordered list of axis objects in the domain
of the variable.

• If axes is not None, include only cer-
tain axes. Otherwise axes is a list of spec-
ifications as described below. Axes are
returned in the order specified unless the
order keyword is given.

• If omit is not None, omit those spec-
ified by an integer dimension number.
Otherwise omit is a list of specifications
as described below.

• order is an optional string determining
the output order.

13.10. Variable 60

cdms, Release 3.1.5

13.10.5 Variable Methods(cont’d)

Type Method Definition
List(cont’d) getAxisList

(axes=None,
omit=None,
order=None)

Specifications for the axes or omit keywords are a list, each
element having one of the following forms:

• An integer dimension index, starting at 0.
• A string representing an axis id or one of the strings

‘time’, ‘latitude’, ‘lat’, ‘longitude’, ‘lon’, ‘lev’ or
‘level’.

• A function that takes an axis as an argument and re-
turns a value. If the value returned is true, the axis
matches.

• an axis object; will match if it is the same object as
axis.

• order can be a string containing the characters
t,x,y,z, or * .

• If a dash (‘-‘) is given, any elements of the result not
chosen otherwise are filled in from left to right with
remaining candidates.

List getAxisListIndex
(axes=None,
omit=None,
order=None)

Return a list of indices of axis objects. Arguments are as
for getAxisList.

List getDomain()
Get the domain. Each element of the list is itself a

tuple of the form (axis,start, length,
true_length)

• Where axis is an axis object,
• Start is the start index of the domain

relative to the axis object,
• Length is the length of the axis, and

true_length is the actual number of
(defined) points in the domain.

• See also: getAxisList.

Horizontal-Grid getGrid() Return the associated grid, or None if the variable is not
gridded.

Axis getLatitude() Get the latitude axis, or None if not found.
Axis getLevel() Get the vertical level axis, or None if not found.
Axis getLongitude() Get the longitude axis, or None if not found.

13.10. Variable 61

cdms, Release 3.1.5

13.10.6 Variable Methods(cont’d)

Type Method Definition
Various getMissing() Get the missing data value, or None if not found.
String getOrder()

Get the order string of a spatio-temporal variable.
• The order string specifies the physi-

cal ordering of the data.
• It is a string of characters with length

equal to the rank of the variable, in-
dicating the order of the variable’s
time, level, latitude, and/or longitude
axes.

Each character is one of:
• ‘t’: time
• ‘z’: vertical level
• ‘y’: latitude
• ‘x’: longitude
• ‘-‘: the axis is not spatio-

temporal.
Example: A variable with ordering
‘tzyx’ is 4-dimensional, where the
ordering of axes is (time, level, lat-
itude, longitude).

Note: The order string is of the form required for the
order argument of a regridder function.

• intervals is a list of scalars, 2-tuples repre-
senting [i,j), slices, and/or Ellipses.

• If no argument(s) are present, all file paths
associated with the variable are returned.

• Returns a list of tuples of the form
(path,slicetuple), where path is the path
of a file, and slicetuple is itself a tuple of slices,
of the same length as the rank of the variable,
representing the portion of the variable in the
file corresponding to intervals.

Note: This function is not defined for transient vari-
able.

Axis getTime() Get the time axis, or None if not found.
List getPaths

(*intervals)
Get the file paths associated with the index region specified
by intervals.

13.10. Variable 62

cdms, Release 3.1.5

13.10.7 Variable Methods(cont’d)

Type Method Definition
Integer len(var)

The length of the first dimension of the variable. If the
variable is zero-dimensional (scalar), a length of 0
is returned.

Note: size() returns the total number
of elements.

Transient Variable pressureRegrid
(newLevel,
method='log',
missing=None,
order=None)

Return the variable regridded to a new set of pressure
levels newLevel. The variable must be a function of
latitude, longitude, pressure level, and (optionally)
time.

• newLevel is an axis of the result pressure lev-
els.

• method is optional, either ‘log’ to interpolate
in the log of pressure (default), or ‘linear’ for
linear interpolation.

• missing is a missing data value. The default
is var.getMissing()

• order is an order string such as ‘tzyx’ or
‘zyx’. The default is var.getOrder()

• See also: regrid,
crossSectionRegrid.

Integer rank() The number of dimensions of the variable.
Transient regrid (togrid,

missing=None,
order=None,
mask=None)

Return the variable regridded to the horizontal grid togrid.

• missing is a Float specifying the missing
data value. The default is 1.0e20.

• order is a string indicating the order of di-
mensions of the array. It has the form returned
from variable.getOrder().

• For example, the string ‘tzyx’ indicates that the
dimension order of array is (time, level, lati-
tude, longitude).

• If unspecified, the function assumes that the
last two dimensions of array match the input
grid.

• mask is a Numpy array, of datatype Integer or
Float, consisting of ones and zeros. A value of
0 or 0.0 indicates that the corresponding data
value is to be ignored for purposes of regrid-
ding.

• If mask is two-dimensional of the same shape
as the input grid, it overrides the mask of the
input grid.

13.10. Variable 63

cdms, Release 3.1.5

13.10.8 Variable Methods(cont’d)

Type Method Definition
Transient(cont’d) regrid (togrid,

missing=None,
order=None,
mask=None)

Return the variable regridded to the horizontal grid togrid.

• If the mask has more than two di-
mensions, it must have the same
shape as array. In this case, the miss-
ing data value is also ignored.

• Such an n-dimensional mask is use-
ful if the pattern of missing data
varies with level (e.g., ocean data) or
time.

Note: If neither missing or mask is set,
the default mask is obtained from the
mask of the array if any.

See also: crossSectionRegrid,
pressureRegrid.

None setAxis(n, axis) Set the n-th axis (0-origin index) of to a copy of axis.
None setAxisList

(axislist)
Set all axes of the variable. axislist is a list of axis objects.

None setMissing(value) Set the missing value. Integer size() Number of ele-
ments of the variable.

Variable subRegion (*region,
time=None,
level=None,
latitude=None,
longitude=None,
squeeze=0, raw=0)

Read a coordinate region of data, returning a transient
variable. A region is a hyperrectangle in coordinate
space.

• region is an argument list, each item of
which specifies an interval of a coordinate axis.
The intervals are listed in the order of the vari-
able axes.

• If trailing dimensions are omitted, all values of
those dimensions are retrieved.

• If an axis is circular (axis.isCircular() is true)
or cycle is specified (see below), then data will
be read with wraparound in that dimension.

• Only one axis may be read with wraparound.
• A coordinate interval has one of the forms

listed in Index and Coordinate Intervals .
• Also see axis.mapIntervalExt.

13.10. Variable 64

cdms, Release 3.1.5

13.10.9 Variable Methods(cont’d)

Type Method Definition
Variable(cont’d) subRegion (*region,

time=None,
level=None,
latitude=None,
longitude=None,
squeeze=0, raw=0)

Read a coordinate region of data, returning a transient vari-
able.

A region is a hyperrectangle in coordinate space.

• The optional keyword arguments
time, level, latitude, and
longitude may also be used to
specify the dimension for which the
interval applies. This is particularly
useful if the order of dimensions is
not known in advance.

• An exception is raised if a keyword
argument conflicts with a positional
region argument.

• The optional keyword argument
squeeze determines whether or
not the shape of the returned array
contains dimensions whose length is
1; by default this argument is 0, and
such dimensions are not ‘squeezed
out’.

• The optional keyword argument
raw specifies whether the return ob-
ject is a variable or a masked array.

• By default, a transient variable is
returned, having the axes and at-
tributes corresponding to 2,3 the
region read. If raw=1, an MV2
masked array is returned, equivalent
to the transient variable without the
axis and attribute information.

13.10. Variable 65

cdms, Release 3.1.5

13.10.10 Variable Methods(cont’d)

Type Method Definition
Variable subSlice (*specs,

time=None,
level=None,
latitude=None,
longitude=None,
squeeze=0, raw=0)

Read a slice of data, returning a transient variable.
This is a functional form of the slice operator [] with
the squeeze option turned off.

• specs is an argument list, each element of
which specifies a slice of the corresponding di-
mension.

There can be zero or more positional arguments,
each of the form:

• A single integer n, meaning slice(n,
n+1)

• An instance of the slice class
• A tuple, which will be used as arguments to

create a slice
• ‘:’, which means a slice covering that entire di-

mension
• Ellipsis (. . .), which means to fill the slice list

with ‘:’ leaving only enough room at the end
for the remaining positional arguments

• A Python slice object, of the form slice(i,
j,k)

• If there are fewer slices than corresponding di-
mensions, all values of the trailing dimensions
are read.

• The keyword arguments are defined as in sub-
Region.

• There must be no conflict between the posi-
tional arguments and the keywords.

• In (a)-(c) and (f), negative numbers are
treated as offsets from the end of that dimen-
sion, as in normal Python indexing.

• String typecode() The Numpy datatype
identifier.

13.10.11 Example Get a Region of Data

Variable ta is a function of (time, latitude, longitude). Read data corresponding to all times, latitudes -45.0 up to but
not including+45.0, longitudes 0.0 through and including longitude 180.0:

>>> data = ta.subRegion(':', (-45.0,45.0,'co'), (0.0, 180.0))

or equivalently:

>>> data = ta.subRegion(latitude=(-45.0,45.0,'co'), longitude=(0.0, 180.0)

Read all data for March, 1980:

>>> data = ta.subRegion(time=('1980-3','1980-4','co'))

13.10. Variable 66

cdms, Release 3.1.5

13.10.12 Variable Slice Operators

Operator Description
[i] The ith element, zero-origin indexing.
[i:j] The ith element through, but not including, element j
[i:] The ith element through the end
[:j] The beginning element through, but not including, element j
[:] The entire array
[i:j:k] Every kth element
[i:j, m:n] Multidimensional slice
[i, ..., m] (Ellipsis) All dimensions between those specified.
[-1] Negative indices ‘wrap around’. -1 is the last element

13.10.13 Index and Coordinate Intervals

Interval Defi-
nition

Example Interval Definition Example

x Single point, such that axis[i]==x In general x
is a scalar. If the axis is a time axis, x may
also be a cdtime relative time type, compo-
nent time type, or string of the form ‘yyyy-
mm-dd hh:mi:ss’ (where trailing fields of the
string may be omitted.

cdtime.reltime(48,'hours since 1980-1')
'1980-1-3'

(x,y) Indices i such that x axis[i] y (-180,180)
(x,y,'co') x axis[i] < y. The third item is de-

fined as in mapInterval.
(-90,90,'cc')

(x,y,'co',
cycle)

x axis[i]< y, with wraparound
(180, 180, 'co', 360.0) Note: It

is not necesary to specify the cycle of a
circular longitude axis, that is, for which
axis.isCircular() is true.

slice(i,j,
k)

Slice object, equivalent to i:j:k in a slice oper-
ator. Refers to the indices i, i+k, i+2k, . . . up
to but not including index j. If i is not specified
or is None it defaults to 0. If j is not specified
or is None it defaults to the length of the axis.
The stride k defaults to 1. k may be negative.

• slice(1,10)
• slice(,,-1) reverses the direction

of the axis.

':' All axis values of one dimension
Ellipsis All values of all intermediate axes

13.10. Variable 67

cdms, Release 3.1.5

13.11 Selectors

A selector is a specification of a region of data to be selected from a variable. For example, the statement:

>>> x = v(time='1979-1-1', level=(1000.0,100.0))

Means ‘select the values of variable v for time ‘1979-1-1’ and levels 1000.0 to 100.0 inclusive, setting x to the result.’
Selectors are generally used to represent regions of space and time.

The form for using a selector is:

>>> result = v(s)

Where v is a variable and s is the selector. An equivalent form is:

>>> result = f('varid', s)

Where f is a file or dataset, and ‘varid’ is the string ID of a variable.

A selector consists of a list of selector components. For example, the selector:

>>> time='1979-1-1', level=(1000.0,100.0)

Has two components: time=’1979-1-1’, and level=(1000.0,100.0). This illustrates that selector components can be
defined with keywords, using the form:

>>> keyword=value

Note that for the keywords time, level, latitude, and longitude, the selector can be used with any variable. If the
corresponding axis is not found, the selector component is ignored. This is very useful for writing general purpose
scripts. The required keyword overrides this behavior. These keywords take values that are coordinate ranges or index
ranges as defined in See Index and Coordinate Intervals.

The following keywords are available: Another form of selector components is the positional form, where the compo-
nent order corresponds to the axis order of a variable. For example:

13.11.1 Selector Keywords

Keyword Description Value
axisid Restrict the axis with ID axisid to a value or

range of values.
See Index and Coordinate Intervals

grid Regrid the result to the grid. Grid object
latitude Restrict latitude values to a value or range.

Short form: lat
See Index and Coordinate Intervals

level Restrict vertical levels to a value or range.
Short form: lev

See Index and Coordinate Intervals

longitude Restrict longitude values to a value or range.
Short form: lon

See Index and Coordinate Intervals

order Reorder the result. Order string, e.g., ‘tzyx’
raw Return a masked array (MV.array) rather than

a transient variable.
0: return a transient variable (default); =1: re-
turn a masked array.

required Require that the axis IDs be present. List of axis identifiers.
squeeze Remove singleton dimensions from the result. 0: leave singleton dimensions (default); 1: re-

move singleton dimensions.
time Restrict time values to a value or range. See Index and Coordinate Intervals

13.11. Selectors 68

cdms, Release 3.1.5

Another form of selector components is the positional form, where the component order corresponds to the axis order
of a variable. For example:

>>> x9 = hus(('1979-1-1','1979-2-1'),1000.0)

Reads data for the range (‘1979-1-1’,’1979-2-1’) of the first axis, and coordinate value 1000.0 of the second axis. Non-
keyword arguments of the form(s) listed in Index and Coordinate Intervals are treated as positional. Such selectors
are more concise, but not as general or flexible as the other types described in this section.

Selectors are objects in their own right. This means that a selector can be defined and reused, independent of a
particular variable. Selectors are constructed using the cdms2.selectors Selector class. The constructor takes an
argument list of selector components. For example:

1 >>> from cdms2.selectors import Selector
2 >>> sel = Selector(time=('1979-1-1','1979-2-1'), level=1000.)
3 >>> x1 = v1(sel)
4 >>> x2 = v2(sel)
5

6 >>> from cdms2.selectors import Selector
7 >>> sel = Selector(time=('1979-1-1','1979-2-1'), level=1000.)
8 >>> x1 = v1(sel)
9 >>> x2 = v2(sel)

For convenience CDMS provides several predefined selectors, which can be used directly or can be combined into
more complex selectors. The selectors time, level, latitude, longitude, and required are equivalent to their keyword
counterparts. For example:

>>> from cdms2 import time, level
>>> x = hus(time('1979-1-1','1979-2-1'), level(1000.))

and

Are equivalent. Additionally, the predefined selectors latitudeslice, longitudeslice, levelslice, and
timeslice take arguments (startindex, stopindex[, stride]):

>>> from cdms2 import timeslice, levelslice
>>> x = v(timeslice(0,2), levelslice(16,17))

Finally, a collection of selectors is defined in module cdutil.region:

1 >>> from cdutil.region import *
2 >>> NH=NorthernHemisphere=domain(latitude=(0.,90.)
3 >>> SH=SouthernHemisphere=domain(latitude=(-90.,0.))
4 >>> Tropics=domain(latitude=(-23.4,23.4))
5 >>> NPZ=AZ=ArcticZone=domain(latitude=(66.6,90.))
6 >>> SPZ=AAZ=AntarcticZone=domain(latitude=(-90.,-66.6))

Selectors can be combined using the & operator, or by refining them in the call:

1 >>> from cdms2.selectors import Selector
2 >>> from cdms2 import level
3 >>> sel2 = Selector(time=('1979-1-1','1979-2-1'))
4 >>> sel3 = sel2 & level(1000.0)
5 >>> x1 = hus(sel3)
6 >>> x2 = hus(sel2, level=1000.0)

13.11. Selectors 69

cdms, Release 3.1.5

13.11.2 Selector Examples

CDMS provides a variety of ways to select or slice data. In the following examples, variable hus is contained in file
sample.nc, and is a function of (time, level, latitude, longitude). Time values are monthly starting at 1979-1-1. There
are 17 levels, the last level being 1000.0. The name of the vertical level axis is ‘plev’. All the examples select the first
two times and the last level. The last two examples remove the singleton level dimension from the result array.

1 >>> import cdms2
2 >>> f = cdms2.open('sample.nc')
3 >>> hus = f.variables['hus']
4 >>>
5 >>> # Keyword selection
6 >>> x = hus(time=('1979-1-1','1979-2-1'), level=1000.)
7 >>>
8 >>> # Interval indicator (see mapIntervalExt)
9 >>> x = hus(time=('1979-1-1','1979-3-1','co'), level=1000.)

10 >>>
11 >>> # Axis ID (plev) as a keyword
12 >>> x = hus(time=('1979-1-1','1979-2-1'), plev=1000.)
13 >>>
14 >>> # Positional
15 >>> x9 = hus(('1979-1-1','1979-2-1'),1000.0)
16 >>>
17 >>> # Predefined selectors
18 >>> from cdms2 import time, level
19 >>> x = hus(time('1979-1-1','1979-2-1'), level(1000.))
20 >>>
21 >>> from cdms2 import timeslice, levelslice
22 >>> x = hus(timeslice(0,2), levelslice(16,17))
23 >>>
24 >>> # Call file as a function
25 >>> x = f('hus', time=('1979-1-1','1979-2-1'), level=1000.)
26 >>>
27 >>> # Python slices
28 >>> x = hus(time=slice(0,2), level=slice(16,17))
29 >>>
30 >>> # Selector objects
31 >>> from cdms2.selectors import Selector
32 >>> sel = Selector(time=('1979-1-1','1979-2-1'), level=1000.)
33 >>> x = hus(sel)
34 >>>
35 >>> sel2 = Selector(time=('1979-1-1','1979-2-1'))
36 >>> sel3 = sel2 & level(1000.0)
37 >>> x = hus(sel3)
38 >>> x = hus(sel2, level=1000.0)
39 >>>
40 >>> # Squeeze singleton dimension (level)
41 >>> x = hus[0:2,16]
42 >>> x = hus(time=('1979-1-1','1979-2-1'), level=1000., squeeze=1)
43 >>>
44 >>> f.close()

13.11. Selectors 70

cdms, Release 3.1.5

13.12 Examples

13.12.1 Example 1

In this example, two datasets are opened, containing surface air temperature (‘tas’) and upper-air temperature (‘ta’)
respectively. Surface air temperature is a function of (time, latitude, longitude). Upper-air temperature is a function
of (time, level, latitude, longitude). Time is assumed to have a relative representation in the datasets (e.g., with units
‘months since basetime’).

Data is extracted from both datasets for January of the first input year through December of the second input year.
For each time and level, three quantities are calculated: slope, variance, and correlation. The results are written to a
netCDF file. For brevity, the functions corrCoefSlope and removeSeasonalCycle are omitted.

1 >>> 1. import cdms2
2 >>> import MV2
3 >>>
4 >>> # Calculate variance, slope, and correlation of
5 >>> # surface air temperature with upper air temperature
6 >>> # by level, and save to a netCDF file. 'pathTa' is the location of
7 >>> # the file containing 'ta', 'pathTas' is the file with contains 'tas'.
8 >>> # Data is extracted from January of year1 through December of year2.
9 >>> def ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,month1,month2):

10 >>>
11 >>> # Open the files for ta and tas
12 >>> fta = cdms2.open(pathTa)
13 >>> ftas = cdms2.open(pathTas)
14 >>>
15 >>> 2. #Get upper air temperature
16 >>> taObj = fta['ta']
17 >>> levs = taObj.getLevel()
18 >>>
19 >>> #Get the surface temperature for the closed interval [time1,time2]
20 >>> tas = ftas('tas', time=(month1,month2,'cc'))
21 >>>
22 >>> # Allocate result arrays
23 >>> newaxes = taObj.getAxisList(omit='time')
24 >>> newshape = tuple([len(a) for a in newaxes])
25 >>> cc = MV2.zeros(newshape, typecode=MV2.Float, axes=newaxes, id='correlation

→˓')
26 >>> b = MV2.zeros(newshape, typecode=MV2.Float, axes=newaxes, id='slope')
27 >>> v = MV2.zeros(newshape, typecode=MV2.Float, axes=newaxes, id='variance')
28 >>>
29 >>> # Remove seasonal cycle from surface air temperature
30 >>> tas = removeSeasonalCycle(tas)
31 >>>
32 >>> # For each level of air temperature, remove seasonal cycle
33 >>> # from upper air temperature, and calculate statistics
34 >>> 5. for ilev in range(len(levs)):
35 >>>
36 >>> ta = taObj(time=(month1,month2,'cc'), \
37 >>> level=slice(ilev, ilev+1), squeeze=1)
38 >>> ta = removeSeasonalCycle(ta)
39 >>> cc[ilev], b[ilev] = corrCoefSlope(tas ,ta)
40 >>> v[ilev] = MV2.sum(ta**2)/(1.0*ta.shape[0])
41 >>>
42 >>> # Write slope, correlation, and variance variables
43 >>> 6. f = cdms2.open('CC_B_V_ALL.nc','w')

(continues on next page)

13.12. Examples 71

cdms, Release 3.1.5

(continued from previous page)

44 >>> f.title = filtered
45 >>> f.write(b)
46 >>> f.write(cc)
47 >>> f.write(v)
48 >>> f.close()
49 >>>
50 >>> 7. if __name__=='__main__':
51 >>> pathTa = '/pcmdi/cdms2/sample/ccmSample_ta.xml'
52 >>> pathTas = '/pcmdi/cdms2/sample/ccmSample_tas.xml'
53 >>> # Process Jan80 through Dec81
54 >>> ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,'80-1','81-12')

Notes:

1 1. Two modules are imported, "cdms2", and "MV2". "MV2" implements
2 arithmetic functions.
3 15. "taObj" is a file (persistent) variable. At this point, no data has
4 actually been read. This happens when the file variable is sliced, or
5 when the subRegion function is called. levs is an axis.
6 20. Calling the file like a function reads data for the given variable
7 and time range. Note that month1 and month2 are time strings.
8 25. In contrast to "taObj", the variables "cc:" b" and "v" are
9 transient variables, not associated with a file. The assigned names

10 are used when the variables are written.
11 34. Another way to read data is to call the variable as a function. The
12 squeeze option removes singleton axes, in this case the level axis.
13 43. Write the data. Axis information is written automatically.
14 50. This is the main routine of the script. "pathTa" and "pathTas"
15 pathnames. Data is processed from January 1980 through December 1981.

13.12.2 Example 2

In the next example, the pointwise variance of a variable over time is calculated, for all times in a dataset. The name
of the dataset and variable are entered, then the variance is calculated and plotted via the vcs module.

1 >>> #!/usr/bin/env python
2 >>> #
3 >>> # Calculates gridpoint total variance
4 >>> # from an array of interest
5 >>> #
6 >>>
7 >>> import cdms2
8 >>> from MV2 import *
9 >>>

10 >>> # Wait for return in an interactive window
11 >>>
12 >>> def pause():
13 >>> print Hit return to continue: ,
14 >>> line = sys.stdin.readline()
15 >>>
16 >>> 1. # Calculate pointwise variance of variable over time
17 >>> # Returns the variance and the number of points
18 >>> # for which the data is defined, for each grid point
19 >>> def calcVar(x):
20 >>> # Check that the first axis is a time axis

(continues on next page)

13.12. Examples 72

cdms, Release 3.1.5

(continued from previous page)

21 >>> firstaxis = x.getAxis(0)
22 >>> if not firstaxis.isTime():
23 >>> raise 'First axis is not time, variable:', x.id
24 >>>
25 >>> n = count(x,0)
26 >>> sumxx = sum(x*x)
27 >>> sumx = sum(x)
28 >>> variance = (n*sumxx -(sumx * sumx))/(n * (n-1.))
29 >>>
30 >>> return variance, n
31 >>>
32 >>> if __name__=='__main__':
33 >>> import vcs, sys
34 >>>
35 >>> print 'Enter dataset path [/pcmdi/cdms2/obs/erbs_mo.xml]: ',
36 >>> path = string.strip(sys.stdin.readline())
37 >>> if path=='': path='/pcmdi/cdms2/obs/erbs_mo.xml'
38 >>>
39 >>> 2. # Open the dataset
40 >>> dataset = cdms2.open(path)
41 >>>
42 >>> # Select a variable from the dataset
43 >>> print 'Variables in file:',path
44 >>> varnames = dataset.variables.keys()
45 >>> varnames.sort()
46 >>> for varname in varnames:
47 >>>
48 >>> var = dataset.variables[varname]
49 >>> if hasattr(var,'long_name'):
50 >>> long_name = var.long_name
51 >>> elif hasattr(var,'title'):
52 >>> long_name = var.title
53 >>> else:
54 >>> long_name = '?'
55 >>>
56 >>> print '%-10s: %s'%(varname,long_name)
57 >>> print 'Select a variable: ',
58 >>> 3. varname = string.strip(sys.stdin.readline())
59 >>> var = dataset(varname)
60 >>> dataset.close()
61 >>>
62 >>> # Calculate variance, count, and set attributes
63 >>> variance,n = calcVar(var)
64 >>> variance.id = 'variance_%s'%var.id
65 >>> n.id = 'count_%s'%var.id
66 >>> if hasattr(var,'units'):
67 >>> variance.units = '(%s)^2'%var.units
68 >>>
69 >>> # Plot variance
70 >>> w=vcs.init()
71 >>> 4. w.plot(variance)
72 >>> pause()
73 >>> w.clear()
74 >>> w.plot(n)
75 >>> pause()
76 >>> w.clear()

13.12. Examples 73

cdms, Release 3.1.5

The result of running this script is as follows:

1 >>> % calcVar.py
2 >>> Enter dataset path [/pcmdi/cdms2/sample/obs/erbs_mo.xml]:
3 >>>
4 >>> Variables in file: /pcmdi/cdms2/sample/obs/erbs_mo.xml
5 >>> albt : Albedo TOA [%]
6 >>> albtcs : Albedo TOA clear sky [%]
7 >>> rlcrft : LW Cloud Radiation Forcing TOA [W/m^2]
8 >>> rlut : LW radiation TOA (OLR) [W/m^2]
9 >>> rlutcs : LW radiation upward TOA clear sky [W/m^2]

10 >>> rscrft : SW Cloud Radiation Forcing TOA [W/m^2]
11 >>> rsdt : SW radiation downward TOA [W/m^2]
12 >>> rsut : SW radiation upward TOA [W/m^2]
13 >>> rsutcs : SW radiation upward TOA clear sky [W/m^2]
14 >>> Select a variable: albt
15 >>>
16 >>> <The variance is plotted>
17 >>>
18 >>> Hit return to continue:
19 >>>
20 >>> <The number of points is plotted>

Notes:

1. n = count(x, 0) returns the pointwise number of valid values, summing across axis 0, the first axis. count is an
MV function.

2. dataset is a Dataset or CdmsFile object, depending on whether a .xml or .nc pathname is entered.
dataset.variables is a dictionary mapping variable name to file variable.

3. var is a transient variable.

4. Plot the variance and count variables. Spatial longitude and latitude information are carried with the computa-
tions, so the continents are plotted correctly.

13.12. Examples 74

CHAPTER

FOURTEEN

MODULE: CDTIME

14.1 Time Types

The cdtime module implements the CDMS time types, methods, and calendars. These are made available with the
command:

>>> import cdtime

Two time types are available: relative time and component time. Relative time is time relative to a fixed base time. It
consists of:

• a units string, of the form ‘units since basetime’, and

• a floating-point value

For example, the time “28.0 days since 1996-1-1” has value=28.0, and units=’days since 1996-1-1’

Component time consists of the integer fields year, month, day, hour, minute, and the floating-point field second. A
sample component time is 1996-2-28 12:10:30.0

The cdtime module contains functions for converting between these forms, based on the common calendars used in
climate simulation. Basic arithmetic and comparison operators are also available.

14.2 Calendars

A calendar specifies the number of days in each month, for a given year. cdtime supports these calendars:

• cdtime.GregorianCalendar: years evenly divisible by four are leap years, except century years not
evenly divisible by 400. This is sometimes called the proleptic Gregorian calendar, meaning that the algorithm
for leap years applies for all years.

• cdtime.MixedCalendar: mixed Julian/Gregorian calendar. Dates before 158210-15 are encoded with the
Julian calendar, otherwise are encoded with the Gregorian calendar. The day immediately following 1582-10-4
is 1582-10-15. This is the default calendar.

• cdtime.JulianCalendar: years evenly divisible by four are leap years,

• cdtime.NoLeapCalendar: all years have 365 days,

• cdtime.Calendar360: all months have 30 days.

Several cdtime functions have an optional calendar argument. The default calendar is the MixedCalendar. The
default calendar may be changed with the command:

cdtime.DefaultCalendar = newCalendar

75

cdms, Release 3.1.5

14.3 Time Constructors

The following table describes the methods for creating time types.

14.3.1 Time Constructors

A relative time type has two members, value and units. Both can be set.

14.4 Relative Time

14.4.1 Relative Time Members

14.5 Component Time

A component time type has six members, all of which are settable.

14.5.1 Component Time

Type Name Summary
Integer year Year value
Integer month Month, in the range 1..12
Integer day Day of month, in the range 1 .. 31
Integer hour Hour, in the range 0 .. 23
Integer minute Minute, in the range 0 .. 59
Float second Seconds, in the range 0.0 .. 60.0

14.6 Time Methods

The following methods apply both to relative and component times.

14.3. Time Constructors 76

cdms, Release 3.1.5

14.6.1 Time Methods

Type Method Definition
Comptime or Reltime t.add(value,

intervalUnits,
cdtime.
DefaultCalendar)

Add an interval of time to a time type t.
Returns the same type of time.

• value is the Float number of interval
units.

• intervalUnits is ``cdtime.
• [Second (s) | Minute(s) Hour(s) | Day(s)

| Week(s) | Month(s) | Season(s) | Year(s)
]``

• calendar is the calendar type.

Integer t.cmp(t2, cdtime.
DefaultCalendar) Compare time values t and t2. Returns -1, 0, 1 as t is

less than, equal to, or greater than t2 respectively.
• t2 is the time to compare.
• calendar is the calendar type.

Comptime or Reltime t.sub(value,
intervalUnits,
cdtime.
DefaultCalendar)

Subtract an interval of time from a time type t.
Returns the same type of time.

• value is the Float number of interval
units.

• intervalUnits is cdtime.[Second
(s) | Minute(s) | Hour(s) | Day(s) |
Week(s) | Month(s) | Season(s) | Year(s)]

• calendar is the calendar type.

Comptime t.tocomp(cdtime.
DefaultCalendar) Convert to component time.

Returns the equivalent component time.
• calendar is the calendar type.

Reltime t.torel(units,
cdtime.
DefaultCalendar)

Convert to relative time. Returns the equivalent rela-
tive time.

14.7 Examples

>>> import cdtime
>>> c = cdtime.comptime(1996,2,28)
>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> print r.add(1, cdtime.Day)
29.000000 days since 1996-1-1
>>> print c.add(36, cdtime.Hours)
1996-2-29 12:0:0.0

Note: When adding or subtracting intervals of months or years, only the month and year of the result are significant.
The reason is that intervals in months/years are not commensurate with intervals in days or fractional days. This leads
to results that may be surprising.

14.7. Examples 77

cdms, Release 3.1.5

>>> c = comptime(1979,8,31)
>>> c.add(1, cdtime.Month)
1979-9-1 0:0:0.0

In other words, the day component of c was ignored in the addition, and the day/hour/minute components of the results
are just the defaults. If the interval is in years, the interval is converted internally to months:

>>> c = comptime(1979,8,31)
>>> c.add(2, cdtime.Years)
1981-8-1 0:0:0.0

Compare time values.

>>> import cdtime
>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> c = cdtime.comptime(1996,2,28)
>>> print c.cmp(r)
1
>>> print r.cmp(c)
-1
>>> print r.cmp(r)
1

Subtract an interval of time.

>>> import cdtime
>>> r = cdtime.reltime(28, "days since 1996-1-1")
>>> c = cdtime.comptime(1996, 2, 28)
>>> print r.sub(10, cdtime.Days)
18.000000 days since 1996-1-1
>>> print c.sub(30, cditme.Days)
1996-1-29 0:0:0.0

For intervals of years or months, see the note under add() in the example above.

Convert to component time.

>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> r.tocomp()
1996-1-29 0:0:0.0

Convert to relative time.

>>> c = comptime(1996,2,28)
>>> print c.torel("days since 1996-1-1")
58.000000 days since 1996-1-1
>>> r = reltime(28,"days since 1996-1-1")
>>> print r.torel("days since 1995")
393.000000 days since 1995
>>> print r.torel("days since 1995").value
393.0

14.7. Examples 78

CHAPTER

FIFTEEN

REGRIDDING DATA

15.1 Overview

CDMS provides several methods for interpolating gridded data:

• From one rectangular, lat-lon grid to another (CDMS regridder)

• Between any two lat-lon grids (SCRIP regridder)

• From one set of pressure levels to another

• From one vertical (lat/level) cross-section to another vertical cross-section.

15.2 CDMS Horizontal Regrider

The simplest method to regrid a variable from one rectangular, lat/lon grid to another is to use the regrid function
defined for variables. This function takes the target grid as an argument, and returns the variable regridded to the target
grid:

1 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/clt.nc"
2 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/geos5-sample.nc"
3 >>> import cdms2
4 >>> import cdat_info
5 >>> f1=cdms2.open("clt.nc")
6 >>> f2=cdms2.open("geos5-sample.nc")
7 >>> clt=f1('clt') # Read the data
8 >>> clt.shape
9 (120, 46, 72)

10 >>> ozone=f2['ozone'] # Get the file variable (no data read)
11 >>> outgrid = ozone.getGrid() # Get the target grid
12 >>> cltnew = clt.regrid(outgrid)
13 >>> cltnew.shape
14 (120, 181, 360)
15 >>> outgrid.shape
16 (181, 360)

A somewhat more efficient method is to create a regridder function. This has the advantage that the mapping is
created only once and can be used for multiple arrays. Also, this method can be used with data in the form of an
MV2.MaskedArray. The steps in this process are:

1. Given an input grid and output grid, generate a regridder function.

2. Call the regridder function on a Numpy array, resulting in an array defined on the output grid. The regridder
function can be called with any array or variable defined on the input grid.

79

cdms, Release 3.1.5

The following example illustrates this process. The regridder function is generated at line 9, and the regridding is
performed at line 10:

1 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/clt.nc"
2 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/geos5-sample.nc"
3 >>> import cdms2
4 >>> from regrid2 import Regridder
5 >>> f = cdms2.open("clt.nc")
6 >>> cltf = f['clt']
7 >>> ingrid = cltf.getGrid()
8 >>> g = cdms2.open('geos5-sample.nc')
9 >>> outgrid = g['ozone'].getGrid()

10 >>> regridfunc = Regridder(ingrid, outgrid)
11 >>> cltnew = regridfunc(cltf)
12 >>> f.close()
13 >>> g.close()

15.2.1 Notes

Line #3 Makes the CDMS module available.

Line #4 Makes the Regridder class available from the regrid module.

Line #5 Opens the input dataset.

Line #6 Gets the variable object named ‘clt’. No data is read.

Line #7 Gets the input grid.

Line #8 Opens a dataset to retrieve the output grid.

Line #9 The output grid is the grid associated with the variable named ‘ozone’ in dataset g. Just the grid is retrieved,
not the data.

Line #10 Generates a regridder function regridfunc.

Line #11 Reads all data for variable cltf, and calls the regridder function on that data, resulting in a transient variable
cltnew.

15.3 SCRIP Horizontal Regridder

To interpolate between grids where one or both grids is non-rectangular, CDMS provides an interface to the SCRIP
regridder package developed at Los Alamos National Laboratory (https://oceans11.lanl.gov/trac/SCRIP).

Figure 3 illustrates the process:

1. Obtain or generate the source and target grids in SCRIP netCDF format. A CDMS grid can be written to a
netCDF file, in SCRIP format, using the write-ScripGrid method.

2. Edit the input namelist file scrip_in to reference the grids and select the method of interpolation, either conser-
vative, bilinear, bicubic, or distance-weighted. See the SCRIP documentation for detailed instructions.

3. Run the scrip executable to generate a remapping file containing the transformation coefficients.

4. CDMS, open the remapping file and create a regridder function with the readRegridder method.

5. Call the regridder function on the input variable, defined on the source grid. The return value is the variable
interpolated to the new grid. Note that the variable may have more than two dimensions. Also note that the input

15.3. SCRIP Horizontal Regridder 80

https://oceans11.lanl.gov/trac/SCRIP

cdms, Release 3.1.5

arguments to the regridder function depend on the type of regridder. For example, the bicubic interpolation has
additional arguments for the gradients of the variable.

15.4 Regridding Data with SCRIP

Example:

Regrid data from a T42 to POP4/3 grid, using the first-order, conservative interpolator.

In this example:

• The input grid is defined in remap_grid_T42.nc.

• The output grid is defined in remap_grid_POP43.nc.

• The input data is variable src_array in file sampleT42Grid.nc.

• The file scrip_in has contents:

1 >>> &remap_inputs
2 >>> num_maps = 1
3 >>>
4 >>> grid1_file = 'remap_grid_T42.nc'
5 >>> grid2_file = 'remap_grid_POP43.nc'
6 >>> interp_file1 = 'rmp_T42_to_POP43_conserv.nc'
7 >>> interp_file2 = 'rmp_POP43_to_T42_conserv.nc'
8 >>> map1_name = 'T42 to POP43 Conservative Mapping'
9 >>> map2_name = 'POP43 to T42 Conservative Mapping'

10 >>> map_method = 'conservative'
11 >>> normalize_opt = 'frac'
12 >>> output_opt = 'scrip'
13 >>> restrict_type = 'latitude'
14 >>> num_srch_bins = 90
15 >>> luse_grid1_area = .false.
16 >>> luse_grid2_area = .false.

num_maps specifies the number of mappings generated, either 1 or 2. For a single mapping, grid1_file and
grid2_file are the source and target grid definitions, respectively. The map_method specifies the type of inter-
polation, either ‘conservative’, ‘bilinear’, ‘bicubic’, or ‘distwgt’ (distanceweighted). The remaining parameters are
described in the SCRIP documentation.

Once the grids and input file are defined, run the scrip executable to generate the remapping file
‘rmp_T42_to_POP43_conserv.nc’

1 >>> % scrip
2 >>> Using latitude bins to restrict search.
3 >>> Computing remappings between:
4 >>> T42 Gaussian Grid
5 >>> and
6 >>> POP 4/3 Displaced-Pole T grid
7 >>> grid1 sweep
8 >>> grid2 sweep
9 >>> Total number of links = 63112

Next, run CDAT and create the regridder:

1 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/remap_grid_POP43.nc"
2 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/remap_grid_T42.nc"

(continues on next page)

15.4. Regridding Data with SCRIP 81

cdms, Release 3.1.5

(continued from previous page)

3 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/rmp_POP43_to_T42_conserv.nc"
4 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/rmp_T42_to_POP43_conserv.nc"
5 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/xieArkin-T42.nc"
6 >>> # Import regrid package for regridder functions
7 >>> import regrid2, cdms2
8 >>> # Read the regridder from the remapper file
9 >>> remapf = cdms2.open('rmp_T42_to_POP43_conserv.nc')

10 >>> regridf = regrid2.readRegridder(remapf)
11 >>> remapf.close()

Then read the input data and regrid:

1 >>> # Get the source variable
2 >>> f = cdms2.open('xieArkin-T42.nc')
3 >>> t42prc = f('prc')
4 >>> f.close()
5 >>> # Regrid the source variable
6 >>> popdat = regridf(t42prc)

Note that t42dat can have rank greater than 2. The trailing dimensions must match the input grid shape. For
example, if t42dat has shape (12, 64, 128), then the input grid must have shape (64,128). Similarly if the variable
had a generic grid with shape (8092,), the last dimension of the variable would have length 8092.

15.5 Pressure-Level Regridder

To regrid a variable which is a function of latitude, longitude, pressure level, and (optionally) time to a new set of
pressure levels, use the pressureRegrid function defined for variables. This function takes an axis representing
the target set of pressure levels, and returns a new variable d regridded to that dimension.

1 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/ta_ncep_87-6-88-4.nc"
2 >>> f=cdms2.open("ta_ncep_87-6-88-4.nc")
3 >>> ta=f('ta')
4 >>> ta.shape
5 (11, 17, 73, 144)
6 >>> ta.getAxisIds()
7 ['time', 'level', 'latitude', 'longitude']
8 >>> result = ta.pressureRegrid(cdms2.createAxis([1000.0]))
9 >>> result.shape

10 (11, 1, 73, 144)

15.6 Cross-Section Regridder

To regrid a variable which is a function of latitude, height, and (optionally) time to a new latitude/height cross-section,
use the crossSectionRegridder defined for variables. This function takes as arguments the new latitudes and
heights, and returns the variable regridded to those axes.

1 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/ta_ncep_87-6-88-4.nc"
2 >>> f=cdms2.open("ta_ncep_87-6-88-4.nc")
3 >>> ta=f('ta')
4 >>> ta.shape
5 (11, 17, 73, 144)

(continues on next page)

15.5. Pressure-Level Regridder 82

cdms, Release 3.1.5

(continued from previous page)

6 >>> levOut=cdms2.createAxis([1000.0,950.])
7 >>> levOut.designateLevel()
8 >>> latOut=cdms2.createAxis(ta.getLatitude()[10:20])
9 >>> latOut.designateLatitude()

10 >>> ta0 = ta[0,:]
11 >>> ta0.getAxisIds()
12 ['level', 'latitude', 'longitude']
13 >>> taout = ta0.crossSectionRegrid(levOut, latOut)
14 >>> taout.shape
15 (2, 10, 144)

15.7 Regrid Module

The regrid module implements the CDMS regridding functionality as well as the SCRIP interface. Although this
module is not strictly a part of CDMS, it is designed to work with CDMS objects.

15.8 CDMS Horizontal Regridder

from regrid2 import Regridder

Makes the CDMS Regridder class available within a Python program. An instance of Regridder is a function which
regrids data from rectangular input to output grids.

15.8.1 CDMS Regridder Constructor

Constructor Description
regridFunction =
Regridder(inputGrid,
outputGrid)

Create a regridder function which interpolates a data array from
input to output grid.

• CDMS regridder functions describes the calling se-
quence of this function.

• inputGrid and outputGrid are CDMS grid ob-
jects.

Note: To set the mask associated with inputGrid or output-
Grid, use the grid setMask function.

15.9 SCRIP Regridder

SCRIP regridder functions are created with the regrid.readRegridder function:

15.7. Regrid Module 83

cdms, Release 3.1.5

15.9.1 SCRIP Regridder Constructor

Constructor Description
regridFunction = regrid.
readRegridder(fileobj,
mapMethod=None, checkGrid=1)

Read a regridder from an open CDMS file object.
• fileobj is a CDMS file object, as returned

from cdms.open.
• mapMethod is one of:

– 'conservative': conservative
remapper, suitable where area-
integrated fields such as water or heat
fluxes must be conserved.

– 'bilinear': bilinear interpolation
– 'bicubic': bicubic interpolation
– 'distwgt': distance-weighted in-

terpolation.
• It is only necessary to specify the map method

if it is not defined in the file.
• If checkGrid is 1 (default), the grid cells are

checked for convexity, and ‘repaired’ if neces-
sary.

• Grid cells may appear to be nonconvex if they
cross a 0 / 2pi boundary.

• The repair consists of shifting the cell vertices
to the same side modulo 360 degrees.

15.10 Regridder Functions

It is only necessary to specify the map method if it is not defined in the file.

If checkGrid is 1 (default), the grid cells are checked for convexity, and ‘repaired’ if necessary. Grid cells may
appear to be nonconvex if they cross a 0 / 2pi boundary. The repair consists of shifting the cell vertices to the same
side modulo 360 degrees.

15.10. Regridder Functions 84

cdms, Release 3.1.5

15.11 CDMS Regridder Functions

A CDMS regridder function is an instance of the CDMS Regridder class. The function is associated with rectan-
gular input and output grids. Typically its use is straightforward:

• The function is passed an input array and returns the regridded array. However, when the array has missing data,
or the input and/or output grids are masked, the logic becomes more complicated.

15.11.1 Step 1

The regridder function first forms an input mask. This mask is either two-dimensional or n-dimensional, depending
on the rank of the user-supplied mask. If no mask or missing value is specified, the mask is obtained from the data
array mask if present.

Two-dimensional case:

• Let mask_1 be the two-dimensional user mask supplied via the mask argument, or the mask of the input grid if
no user mask is specified.

• If a missing-data value is specified via the missing argument, let the implicit_mask be the two-dimensional mask
defined as 0 where the first horizontal slice of the input array is missing, 1 elsewhere.

• The input mask is the logical AND(mask_1, implicit_mask)

N-dimensional case:

• If the user mask is 3 or 4-dimensional with the same shape as the input array, it is used as the input mask.

15.11.2 Step 2

The data is then regridded. In the two-dimensional case, the input mask is ‘broadcast’ across the other dimensions of
the array. In other words, it assumes that all horizontal slices of the array have the same mask. The result is a new
array, defined on the output grid. Optionally, the regridder function can also return an array having the same shape as
the output array, defining the fractional area of the output array which overlaps a non-missing input grid cell. This is
useful for calculating area-weighted means of masked data.

15.11.3 Step 3

Finally, if the output grid has a mask, it is applied to the result array. Where the output mask is 0, data values are set
to the missing data value, or 1.0e20 if undefined. The result array or transient variable will have a mask value of 1
(invalid value) for those output grid cells which completely overlap input grid cells with missing values

15.11. CDMS Regridder Functions 85

cdms, Release 3.1.5

15.11.4 CDMS Regridder Function

Type Function Description
Array or Transient-
Variable

regridFunction
(array,
missing=None,
order=None,
mask=None)

Interpolate a gridded data array to a new grid. The
interpolation preserves the area-weighted mean
on each horizontal slice. If array is a Variable, a
TransientVariable of the same rank as the input
array is returned, otherwise a masked array is
returned.

• array is a Variable, masked array, or
Numpy array of rank 2, 3, or 4.

• For example, the string ‘tzyx’ indicates that
the dimension order of array is (time,
level, latitude, longitude).

• If unspecified, the function assumes that the
last two dimensions of arraymatch the in-
put grid.

• missing is a Float specifying the missing
data value. The default is 1.0e20.

• order is a string indicating the order of di-
mensions of the array. It has the form re-
turned from variable.getOrder().

• mask is a Numpy array, of datatype Integer
or Float, consisting of a fractional number
between 0 and 1.

• A value of 1 or 1.0 indicates that the cor-
responding data value is to be ignored for
purposes of regridding.

• A value of 0 or 0.0 indicates that the corre-
sponding data value is valid. This is consis-
tent with the convention for masks used by
the MV2 module.

• A fractional value between 0.0 and 1.0 in-
dicates the fraction of the data value (e.g.,
the corresponding cell) to be ignored when
regridding. This is useful if a variable is re-
gridded first to grid A and then to another
grid B; the mask when regridding from A to
B would be (1.0 - f) where f is the maskAr-
ray returned from the initial grid operation
using the returnTuple argument.

15.11. CDMS Regridder Functions 86

cdms, Release 3.1.5

15.11.5 DMS Regridder Function(cont’d)

Type Function Description
Array or Transient-
Variable

regridFunction
(array,
missing=None,
order=None,
mask=None)

Interpolate a gridded data array to a new grid. The
interpolation preserves the area-weighted mean
on each horizontal slice. If array is a Variable, a
TransientVariable of the same rank as the input
array is returned, otherwise a masked array is
returned.

• If mask is two-dimensional of the
same shape as the input grid, it
overrides the mask of the input
grid.

• If the mask has more than two di-
mensions, it must have the same
shape as array. In this case,
the missing data value is also
ignored. Such an ndimensional
mask is useful if the pattern of
missing data varies with level
(e.g., ocean data) or time.

Note: If neither missing or mask is
set, the default mask is obtained from
the mask of the array if any.

Array, Array regridFunction
(ar,
missing=None,
order=None,
mask=None,
returnTuple=1)

If called with the optional returnTuple argument
equal to 1, the function returns a tuple dataArray,
maskArray).

• dataArray is the result data array.
• maskArray is a Float32 array of the same shape

as dataArray, such that maskArray[i,j]
is fraction of the output grid cell [i,j] overlapping
a non-missing cell of the grid.

15.12 SCRIP Regridder Functions

A SCRIP regridder function is an instance of the ScripRegridder class. Such a function is created by calling the
regrid.readRegridder method. Typical usage is straightforward:

1 >>> import cdms2
2 >>> import regrid2
3 >>> remapf = cdms2.open('rmp_T42_to_POP43_conserv.nc')
4 >>> regridf = regrid2.readRegridder(remapf)
5 >>> f = cdms2.open('xieArkin-T42.nc')
6 >>> t42prc = f('prc')
7 >>> f.close()
8 >>> # Regrid the source variable
9 >>> popdat = regridf(t42prc)

The bicubic regridder takes four arguments:

15.12. SCRIP Regridder Functions 87

cdms, Release 3.1.5

>>> # outdat = regridf(t42prc, gradlat, gradlon, gradlatlon)

A regridder function also has associated methods to retrieve the following fields:

• Input grid

• Output grid

• Source fraction: the fraction of each source (input) grid cell participating in the interpolation.

• Destination fraction: the fraction of each destination (output) grid cell participating in the interpolation.

In addition, a conservative regridder has the associated grid cell areas for source and target grids.

15.12. SCRIP Regridder Functions 88

cdms, Release 3.1.5

15.12.1 SCRIP Regridder Functions

Return Type Method Description
Array or Transient-
Variable

[conservative, bilinear, and
distance-weighted regridders]
regridFunction(array)

Interpolate a gridded data array to a new grid.
The return value is the regridded data variable.

• array is a Variable, MaskedArray, or
Numpy array.

• The rank of the array may be greater than
the rank of the input grid, in which case
the input grid shape must match a trailing
portion of the array shape.

• For example, if the input grid is curvilin-
ear with shape (64,128), the last two di-
mensions of the array must match.

• Similarly, if the input grid is generic with
shape (2560,), the last dimension of the
array must have that length.

Array or Transient-
Variable

[bicubic regridders]
regridFunction(array,
gradientLat,
gradientLon,
gradientLatLon)

Interpolate a gridded data array to a new grid, using
a bicubic regridder. The return value is the
regridded data variable.

• array is a Variable, MaskedArray, or
Numpy array.

• The rank of the array may be greater than the
rank of the input grid, in which case the input
grid shape must match a trailing portion of the
array shape.

• For example, if the input grid is curvilinear
with shape (64,128), the last two dimensions
of the array must match.

• Simiarly, if the input grid is generic with
shape (2560,), the last dimension of the array
must have that length.

• gradientLat: df/di (see the SCRIP docu-
mentation). Same shape as array.

• gradientLon: df/dj. Same shape as
array.

• gradientLatLon: d(df)/(di)(dj). Same
shape as array.

15.12. SCRIP Regridder Functions 89

cdms, Release 3.1.5

15.12.2 SCRIP Regridder Functions(con’td)

Return Type Method Description
Numpy array getDestinationArea()

[conservative regridders only] Return the area of the destination (output) grid cell.
• The array is 1-D, with length equal to the

number of cells in the output grid.

Numpy array getDestination
Fraction() Return the area fraction of the destination (output)

grid cell that participates in the regridding.
• The array is 1-D, with length equal to the

number of cells in the output grid.

CurveGrid or
Generic-Grid

getInputGrid() Return the input grid, or None if no input grid is associ-
ated with the regridder.

CurveGrid or
Generic-Grid

getOutputGrid() Return the output grid.

Numpy array getSourceFraction()
Return the area fraction of the source (input)

grid cell that participates in the regridding.
• The array is 1-D, with length equal to the

number of cells in the input grid

15.13 Examples

15.13.1 CDMS Regridder

Example:

Regrid data to a uniform output grid.

1 >>> import cdms2
2 >>> from regrid2 import Regridder
3 >>> f = cdms2.open('clt.nc')
4 >>> cltf = f.variables['clt']
5 >>> ingrid = cltf.getGrid()
6 >>> outgrid = cdms2.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
7 >>> regridFunc = Regridder(ingrid, outgrid)
8 >>> newrls = regridFunc(cltf)
9 >>> f.close()

15.13. Examples 90

cdms, Release 3.1.5

15.13.2 Regridder Constructure

Line Notes
3 Open a netCDF file for input.
6 Create a 4 x 5 degree output grid. Note that this grid is not associated with a file or dataset.
7 Create the regridder function.
8 Read all data and regrid. The missing data value is obtained from variable rlsf

Return the area fraction of the source (input) grid cell that participates in the regridding. The array is 1-D, with length
equal to the number of cells in the input grid.

Example:

Get a mask from a separate file, and set as the input grid mask.

1 >>> # wget http://cdat.llnl.gov/cdat/sample_data/clt.nc
2 >>> # wget http://cdat.llnl.gov/cdat/sample_data/geos5-sample.nc
3 >>> import cdms2
4 >>> from regrid2 import Regridder
5 >>> #
6 >>> f = cdms2.open('clt.nc')
7 >>> cltf = f.variables['clt']
8 >>> outgrid = cltf.getGrid()
9 >>> g = cdms2.open('geos5-sample.nc')

10 >>> ozoneg = g.variables['ozone']
11 >>> ingrid = ozoneg.getGrid()
12 >>> regridFunc = Regridder(ingrid,outgrid)
13 >>> uwmaskvar = g.variables['uwnd']
14 >>> uwmask = uwmaskvar[:]<0
15 >>> outArray = regridFunc(ozoneg.subSlice(time=0),mask=uwmask)
16 >>> f.close()
17 >>> g.close()

Line Notes
7 Get the input grid.
10 Get the output grid.
11 Create the regridder function.
14 Get the mask.
15 Regrid with a user mask. The subslice call returns a transient variable corresponding to variables

of at time 0.

Note: Although it cannot be determined from the code, both mask and the input arrays of are four-dimensional. This
is the n-dimensional case.

Example:

Generate an array of zonal mean values.

1 >>> f = cdms2.open(‘rls_ccc_per.nc’)
2 >>> rlsf = f.variables[‘rls’]
3 >>> ingrid = rlsf.getGrid()
4 >>> outgrid = cdms2.createZonalGrid(ingrid)
5 >>> regridFunc = Regridder(ingrid,outgrid)
6 >>> mean = regridFunc(rlsf)
7 >>> f.close()

15.13. Examples 91

cdms, Release 3.1.5

Line Notes
3 Open a netCDF file for inputGet the input grid. Return the area fraction of the source (input) grid

cell that participates in the regridding. The array is 1-D, with length equal to the number of cells
in the input grid.

4 Create a zonal grid. outgrid has the same latitudes as ingrid, and a singleton longitude dimension.
createGlobalMeanGrid could be used here to generate a global mean array.

5 Generate the regridder function.
6 Generate the zonal mean array.

Example:

Regrid an array with missing data, and calculate the area-weighted mean of the result.

1 >>> import cdms2
2 >>> from cdms2.MV2 import *
3 >>> from regrid2 import Regridder
4 >>> f = cdms2.open("ta_ncep_87-6-88-4.nc")
5 >>> var = f('ta')
6 >>> outgrid = cdms2.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
7 >>> outlatw, outlonw = outgrid.getWeights()
8 >>> outweights = outerproduct(outlatw, outlonw)
9 >>> grid = var.getGrid()

10 >>> sample = var[0,0]
11 >>> latw, lonw = grid.getWeights()
12 >>> weights = outerproduct(latw, lonw)
13 >>> inmask = where(greater(absolute(sample),1.e15),0,1)
14 >>> mean = add.reduce(ravel(inmask*weights*sample))/add.reduce(ravel(inmask*weights))
15 >>> regridFunc = Regridder(grid, outgrid)
16 >>> outsample, outmask = regridFunc(sample, mask=inmask, returnTuple=1)
17 >>> outmean = add.reduce(ravel(outmask*outweights*outsample)) / add.

→˓reduce(ravel(outmask*outweights))

Line Notes
2 Create a uniform target grid.
3 Get the latitude and longitude weights.
4 Generate a 2-D weights array.
5 Get the input grid. var is a 4-D variable.
6 Get the first horizontal slice from var.
7-8 Get the input weights, and generate a 2-D weights array.
9 Set the 2-D input mask.
10 Calculate the input array area-weighted mean.
11 Create the regridder function.
12 Regrid. Because returnTuple is set to 1, the result is a tuple (dataArray, maskArray).
13 Calculate the area-weighted mean of the regridded data. mean and outmean should be approxi-

mately equal.

15.13. Examples 92

cdms, Release 3.1.5

15.13.3 SCRIP Regridder

Example:

Regrid from a curvilinear to a generic grid, using a conservative remapping. Compute the area-weighted means on
input and output for comparison.

1 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/remap_grid_T42.nc"
2 >>> # wget http://cdat.llnl.gov/cdat/sample_data/rmp_T42_to_C02562_conserv.nc
3 >>> # wget "http://cdat.llnl.gov/cdat/sample_data/xieArkin-T42.nc"
4 >>> import cdms2, regrid2, MV2
5 >>> # Open the SCRIP remapping file and data file
6 >>> fremap = cdms2.open('rmp_T42_to_C02562_conserv.nc')
7 >>> fdat = cdms2.open('xieArkin-T42.nc')
8 >>> # Input data array
9 >>> dat = fdat('prc')[0,:]

10 >>> # Read the SCRIP regridder
11 >>> regridf = regrid2.readRegridder(fremap)
12 >>> # Regrid the variable
13 >>> outdat = regridf(dat)
14 >>> # Get the cell area and fraction arrays. Areas are computed only
15 >>> # for conservative regridding.
16 >>> srcfrac = regridf.getSourceFraction()
17 >>> srcarea = regridf.getSourceArea()
18 >>> dstfrac = regridf.getDestinationFraction()
19 >>> dstarea = regridf.getDestinationArea()
20 >>> # calculate area-weighted means
21 >>> inmean = MV2.sum(srcfrac*srcarea*MV2.ravel(dat)) / MV2.sum(srcfrac*srcarea)
22 >>> outmean = MV2.sum(dstfrac*dstarea*MV2.ravel(outdat)) / MV2.sum(dstfrac*dstarea)
23 >>> print 'Input mean:', inmean
24 Input mean: 2.60376502339
25 >>> print 'Output mean:', outmean
26 Output mean: 2.60376502339
27 >>> fremap.close()
28 >>> fdat.close()

15.13. Examples 93

CHAPTER

SIXTEEN

CLIMATE DATA MARKUP LANGUAGE (CDML)

16.1 Introduction

The Climate Data Markup Language (CDML) is the markup language used to represent metadata in CDMS. CDML is
based on the W3C XML standard (https://www.w3.org). This chapter defines the syntax of CDML. Read this section
if you will be building or maintaining a CDMS database.

XML, the eXtensible Markup Language, makes it possible to define interoperable dialects of markup languages. The
most recent version of HTML, the Web hypertext markup language, is an XML dialect. CDML is also an XML dialect,
geared toward the representation of gridded climate datasets. XML provides rigor to the metadata representation,
ensuring that applications can access it correctly. XML also deals with internationalization issues, and holds forth the
promise that utilities for browsing, editing, and other common tasks will be available in the future.

CDML files have the file extension .xml or .cdml.

16.2 Elements

A CDML document consists of a nested collection of elements. An element is a description of the metadata associated
with a CDMS object. The form of an element is:

<tag attribute-list> element-content </tag>

or

<tag attribute-list />

where

• tag is a string which defines the type of element

• attribute-list is a blank-separated list of attribute-value pairs, of the form:

attribute = "value"

• element-content depends on the type of element. It is either a list of elements, or text which defines the
element values. For example, the content of an axis element either is a list of axis values, or is a linear element.

• For datasets, the content is the blank-separated list of elements corresponding to the axes, grids, and variables
contained in the dataset.

The CDML elements are:

94

https://www.w3.org

cdms, Release 3.1.5

16.2.1 CDML Tags

Tag Description
attr Extra attribute
axis Coordinate axis
domain Axes on which a variable is defined
domElem Element of a variable domain
linear Linearly-spaced axis values
rectGrid Rectilinear Grid
variable Variable

16.3 Special Characters

XML reserves certain characters for markup. If they appear as content, they must be encoded to avoid confusion with
markup:

16.3.1 Special Character Encodings

Character Encoding
< <
> >
& &
“ "
‘ '

For example, the comment

Certain “special characters”, such as <, >, and ‘, must be encoded.

would appear in an attribute string as:

comment = “Certain "special characters", such as <, >, and ', must be encoded.”

16.4 Identifiers

In CDMS, all objects in a dataset have a unique string identifier. The id attribute holds the value of this identifier. If the
variable, axis, or grid has a string name within a data file, then the id attribute ordinarily has this value. Alternatively,
the name of the object in a data file can be stored in the name_in_file attribute, which can differ from the id. Datasets
also have IDs, which can be used within a larger context (databases).

An identifer must start with an alphabetic character (upper or lower case), an underscore (_), or a colon (:). Characters
after the first must be alphanumeric, an underscore, or colon. There is no restriction on the length of an identifier.

16.3. Special Characters 95

cdms, Release 3.1.5

16.5 CF Metadata Standard

The CF metadata standard defines a set of conventions for usage of netCDF. This standard is supported by CDML.
The document defines names and usage for metadata attributes. CF supersedes the GDT 1.3 standard.

16.6 CDML Syntax

The following notation is used in this section:

• A monospaced block is used for a syntax specification.

• Bold text indicates literals.

• (R|S) denotes either R or S.

• R* denotes zero or more R.

• R+ denotes one or more R.

A CDML document consists of a prolog followed by a single dataset element.

CDML-document ::= prolog dataset-element

The prolog defines the XML version, and the Document Type Definition (DTD), a formal specification of the document
syntax. See https://www.w3.org/TR/1998/REC-xml-19980210 for a formal definition of XML

Version 1.0.

prolog ::= <?xml version="1.0"?> <!DOCTYPE dataset SYSTEM "https://www-pcmdi.
llnl.gov/~drach/cdms/cdml.dtd">

16.6.1 Dataset Element

A dataset element describes a single dataset. The content is a list of elements corresponding to the axes, grids, and
variables contained in the dataset. Axis, variable, and grid elements can be listed in any order, and an element ID can
be used before the element is actually defined.

dataset-element ::= <dataset dataset-attributes> dataset-content </dataset>

dataset-content ::= (axis-element | grid-element | variable-element)*
extra-attribute-element+

16.5. CF Metadata Standard 96

https://cfconventions.org/
https://www.w3.org/TR/1998/REC-xml-19980210

cdms, Release 3.1.5

16.6.2 Dataset Attributes

Attribute Req? CF GDT Notes
appendices N N Y Version number
calendar N N Y

Calendar used for encoding time axes.
• gregorian | julian | noleap |360_day |
proleptic_gregorian | standard

Note: for the CF convention, the calendar attribute is placed on the
time axis.

comment N Y Y Additional dataset information
conventions Y Y Y The netCDF metadata standard. Example: ‘CF-1.0’
cdms_filemap Y N N Map of partitioned axes to files. See note below.
directory N N N Root directory of the dataset
frequency N N N Temporal frequency
history N Y Y Evolution of the data
id Y N N Dataset identifier
institution N Y Y Who made or supplied the data
production N N Y How the data was produced (see source)
project N N N Project associated with the data Example: ‘CMIP 2’
references N Y N Published or web-based references that describe the data or methods used

to produce it
source N Y N The method of production of the original data.
template N N N Filename template. This is an alternate mechanism, other than

cdms_filemap, for describing the file mapping. See ‘cdimport -h’ for de-
tails.

title N Y N A succinct description of the data.

Notes:

The cdms_filemap attribute describes how the dataset is partitioned into files. The format is:

• filemap ::= [varmap, varmap, ...]

• varmap ::= [namelist, slicelist]

• namelist ::= [name, name, ...]

• slicelist ::= [indexlist, indexlist, ,,,]

• indexlist ::= [time0, time1, lev0, lev1, path]

• name ::= variable name

• time0 ::= first index of time in the file, or '-' if not split on time

• time1 ::= last index of time + 1, in the file, or '-' if not split on time

• lev0 ::= first index of vertical levels in the file, or '-' if not split
on level

• lev1 ::= last index +1 of vertical levels in the file, or '-' if not split
on level

• path ::= pathname of the file containing data for this time/level range.

The pathname is appended to the value of the directory attribute, to obtain an absolute pathname.

16.6. CDML Syntax 97

cdms, Release 3.1.5

16.6.3 Axis Element

An axis element describes a single coordinate axis. The content can be a blank-separated list of axis values or a linear
element. A linear element is a representation of a linearly-spaced axis as (start, delta, length).

axis-element ::= <axis axis-attributes> axis-content </axis>

axis-content ::= (axis-values | linear-element) extra-attribute-element*

axis-values ::= [value*]

linear-element ::= <linear delta= "value” length= “Integer“ start= “value“ > </linear>

16.6. CDML Syntax 98

cdms, Release 3.1.5

16.6.4 Axis Elements

Attribute Req? CF GDT Notes
associate N N Y IDs of variables containing alternative sets of coordinates.
axis N Y Y

The spatial type of the axis:
• ‘T’ - time
• ‘X’ - longitude
• ‘Y’ - latitude
• ‘Z’ - vertical level
• ‘-‘ - not spatiotemporal

bounds N Y Y ID of the boundary variable
calendar N Y N See dataset.calendar
climatology N Y N Range of dates to which climatological statistics apply.
comment N Y N String comment
compress N Y Y Dimensions which have been compressed by gathering
datatype Y N N Char, Short, Long, Float, Double, or String
dates N Y N Range of dates to which statistics for a typical diurnal cycle apply.
expand N N Y Coordinates prior to contraction
formula_terms N Y N Variables that correspond to the terms in a formula.
id Y N N Axis identifier. Also the name of the axis in the underlying file(s), if

name_in_file is undefined.
isvar N N N

‘true’ | ‘false’
• ‘false’ if the axis does not have coordinate values explicitly

defined in the underlying file(s).
• Default: ‘true’

leap_month N Y N For a user-defined calendar, the month which is lengthened by a day in
leap years.

leap_year N Y N An example of a leap year for a user-defined calendar. All years that
differ from this year by a multiple of four are leap years.

length N N N Number of axis values, including values for which no data is defined.
Cf. partition_length.

long_name N Y Y Long description of a physical quantity
modulo N N Y Arithmetic modulo of an axis with circular topology.
month_lengths N Y N Length of each month in a non-leap year for a user-defined calendar.
name_in_file N N N Name of the axis in the underlying file(s). See id.
partition N N N How the axis is split across files.
partition_length N N N Number of axis points for which data is actually defined. If data is miss-

ing for some values, this will be smaller than the length.
positive N Y Y Direction of positive for a vertical axis
standard_name N Y N Reference to an entry in the standard name table.
topology N N Y

Axis topology.
• ‘circular’ | ‘linear’

units Y Y Y Units of a physical quantity
weights N N N Name of the weights array

16.6. CDML Syntax 99

cdms, Release 3.1.5

16.6.5 Partition attribute

For an axis in a dataset, the .partition attribute describes how an axis is split across files. It is a list of the start and end
indices of each axis partition.

FIGURE 4. Partitioned axis

For example, Figure 4 shows a time axis, representing the 36 months, January 1980 through December 1982, with
December 1981 missing. The first partition interval is (0,12), the second is (12,23), and the third is (24,36), where the
interval (i,j) represents all indices k such that i <= k < j. The .partition attribute for this axis would be the list:

[0, 12, 12, 23, 24, 36]

Note that the end index of the second interval is strictly less than the start index of the following interval. This indicates
that data for that period is missing.

16.6.6 Grid Element

A grid element describes a horizontal, latitude-longitude grid which is rectilinear in topology,

grid-element ::= <rectGrid grid-attributes> extra-attribute-element* </rectGrid>

16.6.7 6.5 RectGrid Attributes

<th>Attribute</th> <th>Required?</th> <th>GDT?</th> <th>Notes</th>

<tr><td><code>id</code></td><td>Y</td><td>N</td><td>Grid identifier</td></tr>
<tr><td><code>type</code></td><td>Y</td><td>N</td><td><p>Grid classification</p><p>
→˓"gaussian" | "uniform"
| "equalarea" |"generic"</p><p>Default: "generic"</p></td></tr>
<tr><td><code>latitude</code></td><td>Y</td><td>N</td><td>Latitude axis name</td></tr>
<tr><td><code>longitude</code></td><td>Y</td><td>N</td><td>Longitude axis name</td></
→˓tr>
<tr><td><code>mask</code></td><td>N</td><td>N</td><td>Name of associated mask variable
→˓</td></tr>
<tr><td><code>order</code></td><td>Y</td><td>N</td><td><p>Grid ordering "yx"
| "xy"</p><p>Default: “yx”, axis order is latitude, longitude</p></td></tr>

16.6.8 Variable Element

A variable element describes a data variable. The domain of the variable is an ordered list of domain elements naming
the axes on which the variable is defined. A domain element is a reference to an axis or grid in the dataset.

The length of a domain element is the number of axis points for which data can be retrieved. The partition_length is
the number of points for which data is actually defined. If data is missing, this is less than the length.

variable-element ::= <variable variable-attributes> variable-content </variable>

variable-content ::= variable-domain extra-attributeelement*``

variable-domain ::= <domain> domain-element* </domain>

16.6. CDML Syntax 100

cdms, Release 3.1.5

domain-element ::= <domElem name=”axis-name”** start=“``Integer``” **length=**”``Integer``”
partition_length=”``Integer``”/>**

16.6.9 Variable Attributes

Attribute Req? CF GDT Notes
id Y N N Variable identifier. Also, the name of the variable in the underlying

file(s), if name_in_file is undefined.
ad_offset N Y Y Additive offset for packing data. See scale_factor.
associate N N Y IDs of variables containing alternative sets of coordinates Spatio-

temporal dimensions.
axis N N Y Example: TYX for a variable with domain (time, latitude, longitude)

Note: for CF, applies to axes only.
cell_methods N Y N The method used to derive data that represents cell values, e.g., maxi-

mum,mean,variance, etc.
comments N N N Comment string
coordinates N Y N IDs of variables containing coordinate data.
datatype Y N N Char, Short, Long, Float, Double, or String
grid_name N N N Id of the grid.
grid_type N N N gaussian, uniform, equalarea, generic
long_name N Y Y Long description of a physical quantity.
missing_value N Y Y Value used for data that are unknown or missing.
name_in_file N N N Name of the variable in the underlying file(s). See id.
scale_factor N Y Y Multiplicative factor for packing data. See add_offset.
standard_name N Y N Reference to an entry in the standard name table.
subgrid N N Y Records how data values represent subgrid variation.
template N N N Name of the file template to use for this variable. Overrides the dataset

value.
units N Y Y Units of a physical quantity.
valid_max N Y Y Largest valid value of a variable.
valid_min N Y Y Smallest valid value of a variable.
valid_range N Y Y Largest and smallest valid values of a variable.

16.6.10 Attribute Element

Attributes which are not explicitly defined by the GDT convention are represented as extra attribute elements. Any
dataset, axis, grid, or variable element can have an extra attribute as part of its content. This representation is also useful
if the attribute value has non-blank whitespace characters (carriage returns, tabs, linefeeds) which are significant.

The datatype is one of: Char, Short, Long, Float, Double, or String.

extra-attribute-element ::= <attr name=”attribute-name” datatype=”attribute-datatype”>
attribute-value </attr>

16.6. CDML Syntax 101

cdms, Release 3.1.5

16.7 A Sample CDML Document

Dataset “sample” has two variables, and six axes.

Note:

• The file is indented for readability. This is not required; the added whitespace is ignored.

• The dataset contains three axes and two variables. Variables u and v are functions of time, latitude, and longitude.

• The global attribute cdms_filemap describes the mapping between variables and files. The entry [[u],[[0,
1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,,-,u_2002.nc]] indicates that variable u
is contained in file u_2000.nc for time index 0, u_2001.nc for time index 1, etc.

<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/software/cdms/cdml.dtd">

[-90. -78. -66. -54. -42. -30. -18. -6. 6. 18. 30. 42. 54. 66. 78. 90.]

<axis
id ="longitude"
length="32"
units="degrees_east"
datatype="Double"

>

[0. 11.25 22.5 33.75 45. 56.25 67.5 78.75 90.

101.25 112.5 123.75 135. 146.25 157.5 168.75 180. 191.25

202.5 213.75 225. 236.25 247.5 258.75 270. 281.25 292.5

303.75 315. 326.25 337.5 348.75]
</axis>

<axis
id ="time"
partition="[0 1 1 2 2 3]"
calendar="gregorian"
units="days since 2000-1-1"
datatype="Double"
length="3"
name_in_file="time"

>

[0. 366. 731.]
</axis>

<variable
id ="u"
missing_value="-99.9"
units="m/s"
datatype="Double"

>
<domain>

<domElem name="time" length="3" start="0"/>
<domElem name="latitude" length="16" start="0"/>
<domElem name="longitude" length="32" start="0"/>

</domain>

(continues on next page)

16.7. A Sample CDML Document 102

cdms, Release 3.1.5

(continued from previous page)

</variable>

<variable
id ="v"
missing_value="-99.9"
units="m/s"
datatype="Double"

>
<domain>

<domElem name="time" length="3" start="0"/>
<domElem name="latitude" length="16" start="0"/>
<domElem name="longitude" length="32" start="0"/>

</domain>
</variable>

16.7. A Sample CDML Document 103

CHAPTER

SEVENTEEN

CDMS UTILITIES

17.1 CdScan: Importing Datasets into CDMS

17.1.1 Overview

A dataset is a partitioned collection of files. To create a dataset, the files must be scanned to produce a text representa-
tion of the dataset. CDMS represents datasets as an ASCII metafile in the CDML markup language. The file contains
all metadata, together with information describing how the dataset is partitioned into files. (Note: CDMS provides a
direct interface to individual files as well. It is not necessary to scan an individual file in order to access it.)

For CDMS applications to work correctly, it is important that the CDML metafile be valid. The cdscan utility
generates a metafile from a collection of data files.

CDMS assumes that there is some regularity in how datasets are partitioned:

• A variable can be partitioned (split across files) in at most two dimensions.

• The partitioned dimension(s) must be either time or vertical level dimensions; variables may not be partitioned
across longitude or latitude.

• Datasets can be parti-tioned by variable as well.

• For example, one set of files might contain heat fluxes, while another set contains wind speeds.

Otherwise, there is considerable flexibility in how a dataset can be partitioned:

• Files can contain a single variable or all variables in the dataset.

• The time axis can have gaps.

• Horizontal grid boundary information and related information can be duplicated across files.

• Variables can be on different grids.

• Files may be in any of the self-describing formats supported by CDMS, including netCDF, HDF, GrADS/GRIB,
and DRS.

104

cdms, Release 3.1.5

17.1.2 Syntax

The syntax of the cdscan command is

• cdscan [options] file1 file2 . . .

or

• cdscan [options] -f file_list

where

• file1 file2 ... is a blank-separated list of files to scan

• file_list is the name of a file containing a list of files to scan, one pathname per line.

Output is written to standard output by default. Use the -x option to specify an output filename.

17.1.3 CDScan Command Options

Option Description
-a alias_file

Change variable names to the aliases defined in an alias file.
Each line of the alias file consists of two blank separated fields:

• variable_id alias.
• variable_id is the ID of the variable in the file, and
• alias is the name that will be substituted for it in the output dataset.
• Only variables with entries in the alias_file are renamed.

-c calendar
Specify the dataset calendar attribute. One of: * gregorian (default) * julian * noleap *

proleptic_gregorian * standard * 360_day

-d dataset_id
String identifier of the dataset.

• Should not contain blanks or non-printing characters.
• Default: ‘None’

-e newattr
Add or modify attributes of a file, variable, or axis.

The form of newattr is either:
• var.attr = value to modify a variable or attribute, or
• .attr = value to modify a global (file) attribute.
• In either case, value may be quoted to preserve spaces or force the attribute

to be treated as a string.
• If value is not quoted and the first character is a digit, it is converted to

integer or floating-point. This option does not modify the input datafiles.
See notes and examples below.

--exclude
var,var,... Exclude specified variables.

• The argument is a comma-separated list of variables containing no blanks.
• Also see --include.

17.1. CdScan: Importing Datasets into CDMS 105

cdms, Release 3.1.5

17.1.4 CDScan Command Options(cont’d)

Option Description
-f file_list File containing a list of absolute data file names, one per line.
-h Print a help message.
-i time_delta

Causes the time dimension to be represented as linear, producing a more compact
representation.

• This is useful if the time dimension is very long.
• time_delta is a float or integer.
• For example, if the time delta is 6 hours, and the reference units are hours
since xxxx , set the time delta to 6. See the -r option. See Note 2.

--include
var,var,... Only include specified variables in the output.

• The argument is a comma-separated list of variables containing no blanks.
• Also see --exclude.

-j
Scan time as a vector dimension.

• Time values are listed individually.
Note: Turns off the -i option.

-l levels
Specify that the files are partitioned by vertical level. That is, data for different

vertical levels may appear in different files.
• levels is a comma-separated list of levels containing no blanks.
• See Note 3.

-m levelid
Name of the vertical level dimension.

• The default is the vertical dimension as determined by CDMS.
• See Note 3.

17.1. CdScan: Importing Datasets into CDMS 106

cdms, Release 3.1.5

17.1.5 CDScan Command Options(cont’d)

Option Description
-p template

Add a file template string, for compatibility with pre-V3.0 datasets.
• cdimport -h describes template strings.

-q Quiet mode.
-r time_units

Time units of the form units since yyyy-mm-dd hh:mi:ss, where:
• units is one of ‘year’, ‘month’, ‘day’, ‘hour’, ‘minute’, ‘second’.

-s
suffix_file Append a suffix to variable names, depending on the directory containing the data file.

This can be used to distinguish variables having the same name but generated by
different models or ensemble runs.

• suffix_file is the name of a file describing a mapping between directories
and suffixes.

• Each line consists of two blank-separated fields: directory suffix.
• Each file path is compared to the directories in the suffix file.
• If the file path is in that directory or a subdirectory, the corresponding suffix is

appended to the variable IDs in the file.
• If more than one such directory is found, the first directory found is used.
• If no match is made, the variable ids are not altered. Regular expressions can

be used: see the example in the Notes section.

-t timeid
ID of the partitioned time dimension.

• The default is the name of the time dimension as determined by CDMS.
• See Note 1.

--time-linear
tzero,delta,
units[,
calendar]

Override the time dimensions(s) with a linear time dimension.
The arguments are comma-separated list:

• zero is the initial time point, a floating-point value.
• delta is the time delta, floating-point.
• units are time units as specified in the [-r] option.
• calendar is optional, and is specified as in the [-c] option.
• If omitted, it defaults to the value specified by [-c], otherwise as specified

in the file.
Example: --time-linear '0,1,months since 1980,noleap'

-x xmlfile Output file name. By default, output is written to standard output.

Notes:

1. Files can be in netCDF, GrADS/GRIB, HDF, or DRS format, and can be listed in any order. Most commonly,
the files are the result of a single experiment, and the ‘partitioned’ dimension is time. The time dimension of a
variable is the coordinate variable having a name that starts with ‘time’ or having an attribute axis=’T’. If this is
not the case, specify the time dimension with the -t option. The time dimension should be in the form supported
by cdtime. If this is not the case (or to override them) use the -r option.

2. By default, the time values are listed explicitly in the output XML. This can cause a problem if the time di-
mension is very long, say for 6-hourly data. To handle this the form cdscan -i delta <files> may be used. This
generates a compact time representation of the form <start, length, delta>. An exception is raised if the time
dimension for a given file is not linear.

17.1. CdScan: Importing Datasets into CDMS 107

cdms, Release 3.1.5

3. Another form of the command is cdscan -l lev1,lev2,..,levn <files>. This asserts that the dataset is partitioned in
both time and vertical level dimensions. The level dimension of a variable is the dimension having a name that
starts with “lev”, or having an attribute “axis=Z”. If this is not the case, set the level name with the -m option.

• Adding or modifying attributes with the -e option:

– time.units = “days since 1979-1-1”

• sets the units of all variables/axes to “days since 1979-1-1”. Note that since this is done before any other
processing is done, it allows overriding of non-COARDS time units.

– .newattr=newvalue

• Set the global file attribute ‘newattr’ to ‘newvalue’.

• The [--time-linear] option overrides the time values in the file(s). The resulting dimension does not have
any gaps. In contrast, the [-i], [-r] options use the specified time units (from [-r]), and calendar from
[-c] if specified, to convert the file times to the new units. The resulting linear dimension may have gaps.

– In either case, the files are ordered by the time values in the files.

– The [--time-linear] option should be used with caution, as it is applied to all the time dimensions
found.

17.1.6 Examples

• cdscan -c noleap -d test -x test.xml [uv]*.nc

• cdscan -d pcmdi_6h -i 0.25 -r ‘days since 1979-1-1’ 6h.ctl

17.1.7 File Formats

Data may be represented in a variety of self-describing binary file formats, including

• netCDF, the Unidata Network Common Data Format

• HDF, the NCSA Hierarchical Data Format

• GrADS/GRIB, WMO GRIB plus a GrADS control file (.ctl) The first non-comment line of the control file must
be a dset specification.

• DRS, the PCMDI legacy format.

17.1.8 Name Aliasing

A problem can occur if variables in different files are defined on different grids. What if the axis names are the same?
CDMS requires that within a dataset, axis and variable IDs (names) be unique. What should the longitude axes be
named in CDMS to ensure uniqueness? The answer is to allow CDMS IDs to differ from file names.

If a variable or axis has a CDMS ID which differs from its name in the file, it is said to have an alias. The actual name
of the object in the file is stored in the attribute name_in_file. cdscan uses this mechanism (with the -a and s
options) to resolve name conflicts; a new axis or variable ID is generated, and the name_in_file is set to the axis
name in the file.

Name aliases also can be used to enforce naming standards. For data received from an outside organization, variable
names may not be recognized by existing applications. Often it is simpler and safer to add an alias to the metafile
rather than rewrite the data

17.1. CdScan: Importing Datasets into CDMS 108

CHAPTER

EIGHTEEN

APPENDIX A

18.1 CDMS Classes

Figure 1, “CDMS Classes”, illustrates the class inheritance structure of CDMS. The classes may be categorized as
abstract or concrete. Only concrete classes are meant to be used directly. In contrast an abstract class defines the
common interface of its subclasses. For example, the class AbstractAxis2D defines the common interface for two-
dimensional coordinate axes. It has concrete subclasses DatasetAxis2D, FileAxis2D, and TransientAxis2D, which are
used in applications. Abstract classes are denoted in italics.

For many abstract classes there are three ‘flavors’ of subclass: dataset, file, and transient. Dataset-related objects are
thought of as being contained in datasets in the sense that operations on those objects result in I/O operations on the
corresponding dataset. The same is true of file-related objects. Objects in datasets and files are examples of persistent
objects, whose state persists after the application exits. On the other hand, transient objects live in memory and are
not persistent.

In general the concrete subclasses closely mirror the interface of the abstract parent class. For this reason this document
defines the interfaces of the abstract classes, and only discusses a concrete class in the few cases where the interface
has been extended. This allows applications to treat the behavior of, say a dataset axis and file axis, as identical.

FIGURE 1. CDMS Classes

109

CHAPTER

NINETEEN

APPENDIX B

19.1 Quick Start (Cheat Sheet)

https://cdms.readthedocs.io/en/latest/_downloads/793595691d2eefda847bfe76ce04238e/cdms_quick_start.pdf

19.2 VCS Quick Reference (Cheat Sheet)

https://cdms.readthedocs.io/en/latest/_images/vcs_quick_ref.jpg

110

https://cdms.readthedocs.io/en/latest/_downloads/793595691d2eefda847bfe76ce04238e/cdms_quick_start.pdf
https://cdms.readthedocs.io/en/latest/_images/vcs_quick_ref.jpg

cdms, Release 3.1.5

19.3 Release Notes

19.3.1 Release 4.0

CDMS version 4.0 adds support for nonrectangular grids:

• The following grid classes were added:

– AbstractHorizontalGrid

– AbstractCurve-Grid

– AbstractGenericGrid

– DatasetCurveGrid

– FileCurveGrid

– TransientCurve-Grid

– DatasetGenericGrid

– FileGenericGrid

– TransientGenericGrid.

• The following axis classes were added:

– AbstractCoordinateAxis

– AbstractAuxAxis1D

– AbstractAxis2D

– DatasetAuxAxis1D

– FileAuxAxis1D,

– TransientAuxAxis1D

– DatasetAxis2D

– FileAxis2D

– TransientAxis2D.

• The getMesh and clone methods were added for grids.

• An interface to the SCRIP package was added.

19.3. Release Notes 111

cdms, Release 3.1.5

19.3.2 Release 3.0 Overview

CDMS version 3.0 is a significant enhancement of previous versions. The major changes were:

• CDAT/CDMS was integrated with the Numpyal Python masked array class MV2.MaskedVariable. The MV
submodule was added as a wrapper around MV.

• Methods that read data, such as subRegion, subSlice, and the slice operations, return instances of class Tran-
sientVariable. The plot and regrid modules were modified to handle masked array input. The specifiers time=. . . ,
latitude=. . . , etc. were added to the I/O routines.

• The class TransientVariable was added.

• A number of new functions were added, notably subRegion and subSlice, which return instances of Transient-
Variable.

• When a masked array is returned from a method, it is “squeezed”: singleton dimensions are removed. In contrast,
transient variables are not squeezed. I/O functions have a squeeze option. The method setAutoReshapeMode
was removed.

• Internal attributes are handled in the InternalAttributes class. This allows CDMS classes to be subclassed more
readily.

• The class Variable was renamed DatasetVariable.

• The cu module was emulated in cdms. cu and cdms methods can be mixed.

• The code was modularized, so that Python, CDMS, and Numpyal Python can be built and installed separately.
This significantly enhances the portability of the code.

19.3.3 Details

AbstractVariable

• The functions getRegion, getSlice, getValue, and the slice operators all return an instance of MV, a masked
array. Singleton dimensions are squeezed.

• The functions subRegion and subSlice return an instance of TransientVariable. Singleton dimensions are not
squeezed.

• The xxSlice and xxRegion functions have keywords time, level, latitude, and longitude.

• The input functions have the keyword squeeze.

• AbstractVariable inherits from class Slab. The following functions previously available in module cu are Slab
methods:

– getattribute

– setattribute

– listdimattributes

– getdimattribute

– listall, and info

• AbstractVariable implements arithmetic functions, astype.

• The write function was added.

19.3. Release Notes 112

cdms, Release 3.1.5

AbstractAxis

• subaxis was renamed subAxis for consistency.

• Generalized wraparound was implemented, to handle multiple cycles, reversing, and negative strides. By de-
fault, coordinate intervals are closed. The intersection options ‘n’,’e’,’b’,and ‘s’ were added to the interval
indicator - see mapIntervalExt.

AbstractDatabase

• The function open is synonymous with openDataset.

Dataset

• The function open is synonymous with openDataset.

Cdms Module

• The following functions were added:

– asVariable

– isVariable

– createVariable

• The function setAutoReshapeMode was removed. It is replaced by the squeeze option for all I/O functions.

CdmsFile

• The function createVariable has a keyword fill_value. The datatype may be a Numpy/MV typecode.

• The function write was added.

CDMSError

• All errors are an instance of the class CDMSError.

AbstractRectGrid

• The function createGaussianGrid was added.

InternalAttributes

• The class InternalAttributes was added.

• It has methods:

– add_internal_attribute

– is_internal_attribute

– replace_external_attributes

19.3. Release Notes 113

cdms, Release 3.1.5

TransientVariable

• The class TransientVariable was added. It inherits from both AbstractVariable and MV.

• The cdms module function createVariable returns a transient variable.

• This class does not implement the functions getPaths or getTemplate.

MV

• The MV submodule of cdms was added.

19.3. Release Notes 114

CHAPTER

TWENTY

APPENDIX C

20.1 Module cu

The cu module is the original CDAT I/O interface. As of version 3 it is emulated in the cdms module. It is maintained
for backward compatibility.

The cu classes are Slab, corresponding to TransientVariable in CDMS, and cuDataset, corresponding to
Dataset in CDMS.

115

cdms, Release 3.1.5

20.2 Slab

20.2.1 Table Slab Methods

Type Method Definition
Various getdimattribute(dim,

field) Get the value of a dimension attribute.
• dim is the dimension number, an integer in the

range 0..rank- 1.
• field is a string, one of: ‘name’, ‘values’,

‘length’, ‘units’, ‘weights’, ‘bounds’.

Various getattribute(name)
Get the value of an attribute.

• name is the string name of the attribute.
The following special names can always be used:

• filename, comments, grid_name,
grid_type, time_statistic,
long_name, units.

None info(flag=None,
device=sys.stdout) Print slab information.

• If flag is nonzero, dimension values, weights,
and bounds are also printed. Output is sent to
device.

List listall(all=None)
Print slab information.

• If all is nonzero, dimension values, weights,
and bounds are also printed.

List listdimattributes(dim,
field) List dimension attributes. Returns a list of string

attribute names which can be input to
getdimattribute.

• dim is the dimension number, an integer in the
range 0..rank-1.

• field is a string, one of: ‘name’, ‘values’,
‘length’, ‘units’, ‘weights’, ‘bounds’.

None setattribute(name,
value) Set an attribute.

• name is the string name of the attribute.
• value is the value of the attribute.

20.2. Slab 116

cdms, Release 3.1.5

20.3 cuDataset

20.3.1 Table cuDataset Methods

Type Method Definition
None cleardefault() Clear the default variable name.
None default_variable(vname)

Set the default variable name.
• vname is the string variable name.

Array dimensionarray(dname,
vname=None) Values of the axis named dname.

• dname1 is the string axis name.
• vname is the string variable name.

Note: The default is the variable name set by de-
fault_variable.

Axis dimensionobject(dname,
vname=None) Get an axis. dname is the string name of an axis.

• vname is a string variable name.
Note: The default is the variable name set by de-
fault_variable.

Various getattribute (vname,
attribute) Get an attribute value.

• vname is a string variable name.
• attribute is the string attribute name.

String getdimensionunits
(dname,vname=None) Get the units for the given dimension.

• dname is the string name of an axis.
• vname is a string variable name.

Note: The default is the variable name set by de-
fault_variable.

Various getglobal (attribute)
Get the value of the global attribute.

• attribute is the string attribute name.

20.3. cuDataset 117

cdms, Release 3.1.5

20.3.2 Table cuDataset Methods(cont’d)

Type Method Definition
Variable getslab (vname, *args) Read data for a variable.

• vname is the string name of the variable.
• args is an argument list corresponding to the

dimensions of the variable.
Arguments for each dimension can be:

• ‘:’ or None – select the entire dimension
• Ellipsis – select entire dimensions between

the ones given.
• a pair of successive arguments giving an in-

terval in world coordinates.
• a CDMS-style tuple of world coordinates

e.g. (start, stop, ‘cc’)

List listall (vname=None,
all=None) Get info about data from the file.

• vname is the string name of the variable.
Note: If all is non-zero, dimension values, weights,
and bounds are returned as well

List listattribute
(vname=None) Return a list of attribute names.

• vname is the name of the variable.
Note: The default is the variable name set by de-
fault_variable.

List listdimension
(vname=None) Return a list of the dimension names associated with

a variable.
• vname is the name of the variable.

Note: The default is the variable name set by
default_variable.

List listglobal () Return a list of the global attribute names.
List listvariable () Return a list of the variables in the file.

20.3. cuDataset 118

cdms, Release 3.1.5

20.3.3 Table cuDataset Methods(cont’d)

Type Method Definition
None showall (vname=None,

all=None, device=sys.
stdout)

Print a description of the variable.
• vname is the string name of the variable.

Note: If all is non-zero, dimension values, weights,
and bounds are returned as well. Output is sent to
device.

None showattribute
(vname=None, device=sys.
stdout)

Print the attributes of a variable.
• vname is the string name of the variable.

Note: Output is sent to device.

None showdimension
(vname=None, device=sys.
stdout)

Print the dimension names associated with a variable.
• vname is the string name of the variable.

Note: Output is sent to device.

None showglobal (device=sys.
stdout)

Print the global file attributes. Output is sent to device.

None showvariable
(device=sys.stdout)

Print the list of variables in the file.

20.3. cuDataset 119

CHAPTER

TWENTYONE

CDMS SAMPLE DATASET

21.1 THREDDS Data Server (TDS)

• https://aims3.llnl.gov/thredds/catalog/esgcet/254/CDAT-sample.v1.html

21.2 Direct https donwload

• https://cdat.llnl.gov/cdat/sample_data/161122_RobertPincus_multiple_input4MIPs_radiation_RFMIP_
UColorado-RFMIP-20161122_none.nc

• https://cdat.llnl.gov/cdat/sample_data/20160520.A_WCYCL1850.ne30_oEC.edison.alpha6_01_ANN_climo_
Q.nc

• https://cdat.llnl.gov/cdat/sample_data/area_weights.nc

• https://cdat.llnl.gov/cdat/sample_data/BlueMarble.ppm

• https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.001

• https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.002

• https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.003

• https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.004

• https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.005

• https://cdat.llnl.gov/cdat/sample_data/CCTM_CONC.D1.001

• https://cdat.llnl.gov/cdat/sample_data/cdtest10.xml

• https://cdat.llnl.gov/cdat/sample_data/cdtest13.xml

• https://cdat.llnl.gov/cdat/sample_data/cdtest14.xml

• https://cdat.llnl.gov/cdat/sample_data/clt2.nc

• https://cdat.llnl.gov/cdat/sample_data/clt.nc

• https://cdat.llnl.gov/cdat/sample_data/dar.meteo.mod.cam3.era.v31.h0.l3.nrstpt.cp.2000070100.2000080100.
tau.12.36.nc

• https://cdat.llnl.gov/cdat/sample_data/dvtest1.dat

• https://cdat.llnl.gov/cdat/sample_data/dvtest1.dic

• https://cdat.llnl.gov/cdat/sample_data/era15_tas_sample.nc

• https://cdat.llnl.gov/cdat/sample_data/era40_sst_sample.nc

120

https://aims3.llnl.gov/thredds/catalog/esgcet/254/CDAT-sample.v1.html
https://cdat.llnl.gov/cdat/sample_data/161122_RobertPincus_multiple_input4MIPs_radiation_RFMIP_UColorado-RFMIP-20161122_none.nc
https://cdat.llnl.gov/cdat/sample_data/161122_RobertPincus_multiple_input4MIPs_radiation_RFMIP_UColorado-RFMIP-20161122_none.nc
https://cdat.llnl.gov/cdat/sample_data/20160520.A_WCYCL1850.ne30_oEC.edison.alpha6_01_ANN_climo_Q.nc
https://cdat.llnl.gov/cdat/sample_data/20160520.A_WCYCL1850.ne30_oEC.edison.alpha6_01_ANN_climo_Q.nc
https://cdat.llnl.gov/cdat/sample_data/area_weights.nc
https://cdat.llnl.gov/cdat/sample_data/BlueMarble.ppm
https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.001
https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.002
https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.003
https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.004
https://cdat.llnl.gov/cdat/sample_data/CCTM_ACONC.D1.005
https://cdat.llnl.gov/cdat/sample_data/CCTM_CONC.D1.001
https://cdat.llnl.gov/cdat/sample_data/cdtest10.xml
https://cdat.llnl.gov/cdat/sample_data/cdtest13.xml
https://cdat.llnl.gov/cdat/sample_data/cdtest14.xml
https://cdat.llnl.gov/cdat/sample_data/clt2.nc
https://cdat.llnl.gov/cdat/sample_data/clt.nc
https://cdat.llnl.gov/cdat/sample_data/dar.meteo.mod.cam3.era.v31.h0.l3.nrstpt.cp.2000070100.2000080100.tau.12.36.nc
https://cdat.llnl.gov/cdat/sample_data/dar.meteo.mod.cam3.era.v31.h0.l3.nrstpt.cp.2000070100.2000080100.tau.12.36.nc
https://cdat.llnl.gov/cdat/sample_data/dvtest1.dat
https://cdat.llnl.gov/cdat/sample_data/dvtest1.dic
https://cdat.llnl.gov/cdat/sample_data/era15_tas_sample.nc
https://cdat.llnl.gov/cdat/sample_data/era40_sst_sample.nc

cdms, Release 3.1.5

• https://cdat.llnl.gov/cdat/sample_data/era40_tas_sample.nc

• https://cdat.llnl.gov/cdat/sample_data/genutil_statistics.nc

• https://cdat.llnl.gov/cdat/sample_data/geo.1deg.ctl

• https://cdat.llnl.gov/cdat/sample_data/geo.1deg.gmp

• https://cdat.llnl.gov/cdat/sample_data/geo.1deg.grb

• https://cdat.llnl.gov/cdat/sample_data/geos5-sample.nc

• https://cdat.llnl.gov/cdat/sample_data/gfs.globl.b20121028_00z.e20121102_00z.ctl

• https://cdat.llnl.gov/cdat/sample_data/gfs.globl.b20121028_00z.e20121102_00z.data

• https://cdat.llnl.gov/cdat/sample_data/GPCP_ANN_climo.nc

• https://cdat.llnl.gov/cdat/sample_data/gpcp_cdr_v23rB1_y2016_m08.nc

• https://cdat.llnl.gov/cdat/sample_data/GRIDCRO2D_D1.001

• https://cdat.llnl.gov/cdat/sample_data/hadcrut2_sample.nc

• https://cdat.llnl.gov/cdat/sample_data/junk.nc

• https://cdat.llnl.gov/cdat/sample_data/MERRA_ANN_climo_SHUM.nc

• https://cdat.llnl.gov/cdat/sample_data/meshfill.nc

• https://cdat.llnl.gov/cdat/sample_data/model_ANN_climo.nc

• https://cdat.llnl.gov/cdat/sample_data/navy_land.nc

• https://cdat.llnl.gov/cdat/sample_data/netcdf4_compressed_example.nc

• https://cdat.llnl.gov/cdat/sample_data/obs_timeseries.nc

• https://cdat.llnl.gov/cdat/sample_data/prcp_1951.nc

• https://cdat.llnl.gov/cdat/sample_data/psl_6h.nc

• https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.0E.nc

• https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.180E.nc

• https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.180W.nc

• https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.60E.nc

• https://cdat.llnl.gov/cdat/sample_data/readonly.nc

• https://cdat.llnl.gov/cdat/sample_data/remap_grid_POP43.nc

• https://cdat.llnl.gov/cdat/sample_data/remap_grid_T42.nc

• https://cdat.llnl.gov/cdat/sample_data/rlut_CERES_000001-000012_ac.nc

• https://cdat.llnl.gov/cdat/sample_data/rmp_C02562_to_T42_conserv.nc

• https://cdat.llnl.gov/cdat/sample_data/rmp_POP43_to_T42_conserv.nc

• https://cdat.llnl.gov/cdat/sample_data/rmp_T42_to_C02562_conserv.nc

• https://cdat.llnl.gov/cdat/sample_data/rmp_T42_to_POP43_conserv.nc

• https://cdat.llnl.gov/cdat/sample_data/sampleCurveGrid4.nc

• https://cdat.llnl.gov/cdat/sample_data/sampleGenGrid3.nc

• https://cdat.llnl.gov/cdat/sample_data/sample.nc

21.2. Direct https donwload 121

https://cdat.llnl.gov/cdat/sample_data/era40_tas_sample.nc
https://cdat.llnl.gov/cdat/sample_data/genutil_statistics.nc
https://cdat.llnl.gov/cdat/sample_data/geo.1deg.ctl
https://cdat.llnl.gov/cdat/sample_data/geo.1deg.gmp
https://cdat.llnl.gov/cdat/sample_data/geo.1deg.grb
https://cdat.llnl.gov/cdat/sample_data/geos5-sample.nc
https://cdat.llnl.gov/cdat/sample_data/gfs.globl.b20121028_00z.e20121102_00z.ctl
https://cdat.llnl.gov/cdat/sample_data/gfs.globl.b20121028_00z.e20121102_00z.data
https://cdat.llnl.gov/cdat/sample_data/GPCP_ANN_climo.nc
https://cdat.llnl.gov/cdat/sample_data/gpcp_cdr_v23rB1_y2016_m08.nc
https://cdat.llnl.gov/cdat/sample_data/GRIDCRO2D_D1.001
https://cdat.llnl.gov/cdat/sample_data/hadcrut2_sample.nc
https://cdat.llnl.gov/cdat/sample_data/junk.nc
https://cdat.llnl.gov/cdat/sample_data/MERRA_ANN_climo_SHUM.nc
https://cdat.llnl.gov/cdat/sample_data/meshfill.nc
https://cdat.llnl.gov/cdat/sample_data/model_ANN_climo.nc
https://cdat.llnl.gov/cdat/sample_data/navy_land.nc
https://cdat.llnl.gov/cdat/sample_data/netcdf4_compressed_example.nc
https://cdat.llnl.gov/cdat/sample_data/obs_timeseries.nc
https://cdat.llnl.gov/cdat/sample_data/prcp_1951.nc
https://cdat.llnl.gov/cdat/sample_data/psl_6h.nc
https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.0E.nc
https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.180E.nc
https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.180W.nc
https://cdat.llnl.gov/cdat/sample_data/ps.wrap.test.60E.nc
https://cdat.llnl.gov/cdat/sample_data/readonly.nc
https://cdat.llnl.gov/cdat/sample_data/remap_grid_POP43.nc
https://cdat.llnl.gov/cdat/sample_data/remap_grid_T42.nc
https://cdat.llnl.gov/cdat/sample_data/rlut_CERES_000001-000012_ac.nc
https://cdat.llnl.gov/cdat/sample_data/rmp_C02562_to_T42_conserv.nc
https://cdat.llnl.gov/cdat/sample_data/rmp_POP43_to_T42_conserv.nc
https://cdat.llnl.gov/cdat/sample_data/rmp_T42_to_C02562_conserv.nc
https://cdat.llnl.gov/cdat/sample_data/rmp_T42_to_POP43_conserv.nc
https://cdat.llnl.gov/cdat/sample_data/sampleCurveGrid4.nc
https://cdat.llnl.gov/cdat/sample_data/sampleGenGrid3.nc
https://cdat.llnl.gov/cdat/sample_data/sample.nc

cdms, Release 3.1.5

• https://cdat.llnl.gov/cdat/sample_data/sample_polar.nc

• https://cdat.llnl.gov/cdat/sample_data/sftbyrgn.nc

• https://cdat.llnl.gov/cdat/sample_data/sftlf_10x10.nc

• https://cdat.llnl.gov/cdat/sample_data/sftlf_ccsr.nc

• https://cdat.llnl.gov/cdat/sample_data/sftlf_dnm.nc

• https://cdat.llnl.gov/cdat/sample_data/sftlf_visus.nc

• https://cdat.llnl.gov/cdat/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.
nc

• https://cdat.llnl.gov/cdat/sample_data/so_Omon_GISS-E2-R_historicalNat_r5i1p1_185001-187512_
2timesteps.nc

• https://cdat.llnl.gov/cdat/sample_data/so_Omon_HadGEM2-CC_historical_r1i1p1_185912-186911_
2timesteps.nc

• https://cdat.llnl.gov/cdat/sample_data/so_Omon_MPI-ESM-LR_1pctCO2_r1i1p1_185001-185912_
2timesteps.nc

• https://cdat.llnl.gov/cdat/sample_data/stereographic.nc

• https://cdat.llnl.gov/cdat/sample_data/swan.four.nc

• https://cdat.llnl.gov/cdat/sample_data/ta_300_850_PCM_O_mm_xy_wa_r0000_0000.dat

• https://cdat.llnl.gov/cdat/sample_data/ta_300_850_PCM_O_mm_xy_wa_r0000_0000.dic

• https://cdat.llnl.gov/cdat/sample_data/ta_ncep_87-6-88-4.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_6h.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1979.01-1979.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1980.01-1980.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1981.01-1981.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1982.01-1982.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1983.01-1983.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1984.01-1984.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a.xml

• https://cdat.llnl.gov/cdat/sample_data/tas_cru_1979.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1979.01-1979.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1980.01-1980.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1981.01-1981.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1982.01-1982.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1983.01-1983.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1984.01-1984.12.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a.xml

• https://cdat.llnl.gov/cdat/sample_data/tas_ecm_1979.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_gavg_rnl_ecm.nc

21.2. Direct https donwload 122

https://cdat.llnl.gov/cdat/sample_data/sample_polar.nc
https://cdat.llnl.gov/cdat/sample_data/sftbyrgn.nc
https://cdat.llnl.gov/cdat/sample_data/sftlf_10x10.nc
https://cdat.llnl.gov/cdat/sample_data/sftlf_ccsr.nc
https://cdat.llnl.gov/cdat/sample_data/sftlf_dnm.nc
https://cdat.llnl.gov/cdat/sample_data/sftlf_visus.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_GISS-E2-R_historicalNat_r5i1p1_185001-187512_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_GISS-E2-R_historicalNat_r5i1p1_185001-187512_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_HadGEM2-CC_historical_r1i1p1_185912-186911_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_HadGEM2-CC_historical_r1i1p1_185912-186911_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_MPI-ESM-LR_1pctCO2_r1i1p1_185001-185912_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/so_Omon_MPI-ESM-LR_1pctCO2_r1i1p1_185001-185912_2timesteps.nc
https://cdat.llnl.gov/cdat/sample_data/stereographic.nc
https://cdat.llnl.gov/cdat/sample_data/swan.four.nc
https://cdat.llnl.gov/cdat/sample_data/ta_300_850_PCM_O_mm_xy_wa_r0000_0000.dat
https://cdat.llnl.gov/cdat/sample_data/ta_300_850_PCM_O_mm_xy_wa_r0000_0000.dic
https://cdat.llnl.gov/cdat/sample_data/ta_ncep_87-6-88-4.nc
https://cdat.llnl.gov/cdat/sample_data/tas_6h.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1979.01-1979.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1980.01-1980.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1981.01-1981.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1982.01-1982.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1983.01-1983.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a_1984.01-1984.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ccsr-95a.xml
https://cdat.llnl.gov/cdat/sample_data/tas_cru_1979.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1979.01-1979.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1980.01-1980.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1981.01-1981.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1982.01-1982.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1983.01-1983.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a_1984.01-1984.12.nc
https://cdat.llnl.gov/cdat/sample_data/tas_dnm-95a.xml
https://cdat.llnl.gov/cdat/sample_data/tas_ecm_1979.nc
https://cdat.llnl.gov/cdat/sample_data/tas_gavg_rnl_ecm.nc

cdms, Release 3.1.5

• https://cdat.llnl.gov/cdat/sample_data/tas_GFDL-ESM2G_Amon_historical_r1i1p1_198501-200512-clim.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_mo_clim.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_mo.nc

• https://cdat.llnl.gov/cdat/sample_data/tas_ukmo_con.nc

• https://cdat.llnl.gov/cdat/sample_data/taylor.nc

• https://cdat.llnl.gov/cdat/sample_data/tdata.hdf

• https://cdat.llnl.gov/cdat/sample_data/test.2.bin

• https://cdat.llnl.gov/cdat/sample_data/test_anim.nc

• https://cdat.llnl.gov/cdat/sample_data/test.bin

• https://cdat.llnl.gov/cdat/sample_data/test.cdms

• https://cdat.llnl.gov/cdat/sample_data/test_col.asc

• https://cdat.llnl.gov/cdat/sample_data/testgrib2.ctl

• https://cdat.llnl.gov/cdat/sample_data/testgrib2.grib2

• https://cdat.llnl.gov/cdat/sample_data/testgrib2.idx

• https://cdat.llnl.gov/cdat/sample_data/test_mesa_leak.nc

• https://cdat.llnl.gov/cdat/sample_data/testpp.pp

• https://cdat.llnl.gov/cdat/sample_data/test.xml

• https://cdat.llnl.gov/cdat/sample_data/thermo.nc

• https://cdat.llnl.gov/cdat/sample_data/th_yr.nc

• https://cdat.llnl.gov/cdat/sample_data/ts_da.nc

• https://cdat.llnl.gov/cdat/sample_data/u_2000.nc

• https://cdat.llnl.gov/cdat/sample_data/u_2001.nc

• https://cdat.llnl.gov/cdat/sample_data/u_2002.nc

• https://cdat.llnl.gov/cdat/sample_data/v_2000.nc

• https://cdat.llnl.gov/cdat/sample_data/v_2001.nc

• https://cdat.llnl.gov/cdat/sample_data/v_2002.nc

• https://cdat.llnl.gov/cdat/sample_data/vertical.nc

• https://cdat.llnl.gov/cdat/sample_data/vmro3_input4MIPs_ozone_DAMIP_CCMI-hist-stratO3-1-0_gr_
185001_nco.nc

• https://cdat.llnl.gov/cdat/sample_data/wk_data.nc

• https://cdat.llnl.gov/cdat/sample_data/wk_results.nc

• https://cdat.llnl.gov/cdat/sample_data/wspd.coads.nc

• https://cdat.llnl.gov/cdat/sample_data/wspd.nc

• https://cdat.llnl.gov/cdat/sample_data/xieArkin-T42.nc

21.2. Direct https donwload 123

https://cdat.llnl.gov/cdat/sample_data/tas_GFDL-ESM2G_Amon_historical_r1i1p1_198501-200512-clim.nc
https://cdat.llnl.gov/cdat/sample_data/tas_mo_clim.nc
https://cdat.llnl.gov/cdat/sample_data/tas_mo.nc
https://cdat.llnl.gov/cdat/sample_data/tas_ukmo_con.nc
https://cdat.llnl.gov/cdat/sample_data/taylor.nc
https://cdat.llnl.gov/cdat/sample_data/tdata.hdf
https://cdat.llnl.gov/cdat/sample_data/test.2.bin
https://cdat.llnl.gov/cdat/sample_data/test_anim.nc
https://cdat.llnl.gov/cdat/sample_data/test.bin
https://cdat.llnl.gov/cdat/sample_data/test.cdms
https://cdat.llnl.gov/cdat/sample_data/test_col.asc
https://cdat.llnl.gov/cdat/sample_data/testgrib2.ctl
https://cdat.llnl.gov/cdat/sample_data/testgrib2.grib2
https://cdat.llnl.gov/cdat/sample_data/testgrib2.idx
https://cdat.llnl.gov/cdat/sample_data/test_mesa_leak.nc
https://cdat.llnl.gov/cdat/sample_data/testpp.pp
https://cdat.llnl.gov/cdat/sample_data/test.xml
https://cdat.llnl.gov/cdat/sample_data/thermo.nc
https://cdat.llnl.gov/cdat/sample_data/th_yr.nc
https://cdat.llnl.gov/cdat/sample_data/ts_da.nc
https://cdat.llnl.gov/cdat/sample_data/u_2000.nc
https://cdat.llnl.gov/cdat/sample_data/u_2001.nc
https://cdat.llnl.gov/cdat/sample_data/u_2002.nc
https://cdat.llnl.gov/cdat/sample_data/v_2000.nc
https://cdat.llnl.gov/cdat/sample_data/v_2001.nc
https://cdat.llnl.gov/cdat/sample_data/v_2002.nc
https://cdat.llnl.gov/cdat/sample_data/vertical.nc
https://cdat.llnl.gov/cdat/sample_data/vmro3_input4MIPs_ozone_DAMIP_CCMI-hist-stratO3-1-0_gr_185001_nco.nc
https://cdat.llnl.gov/cdat/sample_data/vmro3_input4MIPs_ozone_DAMIP_CCMI-hist-stratO3-1-0_gr_185001_nco.nc
https://cdat.llnl.gov/cdat/sample_data/wk_data.nc
https://cdat.llnl.gov/cdat/sample_data/wk_results.nc
https://cdat.llnl.gov/cdat/sample_data/wspd.coads.nc
https://cdat.llnl.gov/cdat/sample_data/wspd.nc
https://cdat.llnl.gov/cdat/sample_data/xieArkin-T42.nc

CHAPTER

TWENTYTWO

API

22.1 Classes

Type Constructor
avariable CDMS Variable objects, abstract interface
axis CDMS Axis objects
fvariable CDMS File-based variables.
bindex Bin index for non-rectilinear grids
cache CDMS cache management and file movement objects
variable DatasetVariable: Dataset-based variables
cdurllib Customized URLopener
cdurlparse Parse (absolute and relative) URLs.
cudsinterface Emulation of old cu package
database CDMS database objects
dataset CDMS dataset and file objects
forecast CDMS Forecast
gengrid CDMS Generic Grids
grid CDMS Grid objects
hgrid CDMS HorizontalGrid objects
MV2 CDMS Variable objects, MaskedArray interface
selectors Classes to support easy selection of climate data
tvariable TransientVariable (created by createVariable) is a child of both AbstractVariable and the

masked array class.
slabinterface Read part of the old cu slab interface implemented over CDMS

22.2 Regridder

Type Constructor
horizontal Create a horizontal regridder
esmf Regrid source grid data to destination grid data using ESMF
crossSection
mvESMFRegrid
mvGenericRegrid
pressure
scrip

124

CHAPTER

TWENTYTHREE

INDICES AND TABLES

• genindex

• modindex

• search

125

	Overview
	Variables
	File I/O
	Coordinate Axes
	Attributes
	Masked Values
	File Variables
	Dataset Variables
	Grids
	Example: A Curvilinear Grid
	Example: A Generic Grid

	Regridding
	CDMS Regridder
	SCRIP Regridder

	Time Types
	Plotting Data
	CDMS Python Application Programming Interface
	Overview
	A First Example
	Cdms Module
	CdmsObj
	CoordinateAxis
	CdmsFile
	Dataset
	MV Module
	HorizontalGrid
	Variable
	Selectors
	Examples

	Module: CdTime
	Time Types
	Calendars
	Time Constructors
	Relative Time
	Component Time
	Time Methods
	Examples

	Regridding Data
	Overview
	CDMS Horizontal Regrider
	SCRIP Horizontal Regridder
	Regridding Data with SCRIP
	Pressure-Level Regridder
	Cross-Section Regridder
	Regrid Module
	CDMS Horizontal Regridder
	SCRIP Regridder
	Regridder Functions
	CDMS Regridder Functions
	SCRIP Regridder Functions
	Examples

	Climate Data Markup Language (CDML)
	Introduction
	Elements
	Special Characters
	Identifiers
	CF Metadata Standard
	CDML Syntax
	A Sample CDML Document

	CDMS Utilities
	CdScan: Importing Datasets into CDMS

	APPENDIX A
	CDMS Classes

	APPENDIX B
	Quick Start (Cheat Sheet)
	VCS Quick Reference (Cheat Sheet)
	Release Notes

	APPENDIX C
	Module cu
	Slab
	cuDataset

	CDMS Sample Dataset
	THREDDS Data Server (TDS)
	Direct https donwload

	API
	Classes
	Regridder

	Indices and tables

